【題目】如圖,已知矩形中,,的中點(diǎn),將沿著折起,使得.

1)求證:

2)若的中點(diǎn),求直線與平面的所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)根據(jù),的中點(diǎn),在中,由勾股定理可得.,同理在中,得到.由線面垂直的判定定理證明即可.

2)結(jié)合(1)以為原點(diǎn),軸,過(guò)垂直于面方向?yàn)?/span>軸,建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量的坐標(biāo),設(shè)直線與平面的所成角,由求解.

1)因?yàn)?/span>,的中點(diǎn),

所以在中,,

所以.

又因?yàn)?/span>,

所以在中,因?yàn)?/span>

所以.

,

所以,

,

所以.

2)以為原點(diǎn),軸,過(guò)垂直于面方向?yàn)?/span>軸,建立空間直角坐標(biāo)系:

,,,,

所以,

設(shè)平面的一個(gè)法向量,

,

,

,則

所以平面的一個(gè)法向量為,

,

設(shè)直線與平面的所成角,

所以與面所成角的正弦值為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是某地51日至15日日平均溫度變化的折線圖,日平均溫度高于20度低于27度時(shí)適宜戶外活動(dòng),某人隨機(jī)選擇51日至514日中的某一天到達(dá)該地停留兩天(包括到達(dá)當(dāng)日).

1)求這15天日平均溫度的極差和均值;

(2)求此人停留期間只有一天的日平均溫度適宜戶外活動(dòng)的概率;

(3)由折線圖判斷從哪天開(kāi)始連續(xù)三天日平均溫度的方差最大?(寫(xiě)出結(jié)論,不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且點(diǎn)關(guān)于點(diǎn)對(duì)稱.

)求橢圓的方程;

)過(guò)右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),過(guò)點(diǎn)且平行于的直線與橢圓交于另一點(diǎn),問(wèn)是否存在直線,使得四邊形的對(duì)角線互相平分?若存在,求出的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角AB,C的對(duì)邊分別為a,b,c,

1)若還同時(shí)滿足下列四個(gè)條件中的三個(gè):①,②,③,④的面積,請(qǐng)指出這三個(gè)條件,并說(shuō)明理由;

2)若,求周長(zhǎng)L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)遞減區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

3)若,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次運(yùn)動(dòng)會(huì)上,某單位派出了由6名主力隊(duì)員和5名替補(bǔ)隊(duì)員組成的代表隊(duì)參加比賽.

1)如果隨機(jī)抽派5名隊(duì)員上場(chǎng)比賽,將主力隊(duì)員參加比賽的人數(shù)記為,求隨機(jī)變量的數(shù)學(xué)期望;

2)若主力隊(duì)員中有2名隊(duì)員在練習(xí)比賽中受輕傷,不宜同時(shí)上場(chǎng);替補(bǔ)隊(duì)員中有2名隊(duì)員身材相對(duì)矮小,也不宜同時(shí)上場(chǎng),那么為了場(chǎng)上參加比賽的5名隊(duì)員中至少有3名主力隊(duì)員,教練員有多少種組隊(duì)方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為培養(yǎng)學(xué)生對(duì)傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識(shí)競(jìng)賽.

1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識(shí)競(jìng)賽成績(jī)優(yōu)秀與文理分科有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

20

總計(jì)

60

2)現(xiàn)已知,三人獲得優(yōu)秀的概率分別為,,設(shè)隨機(jī)變量表示,,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,過(guò)曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫(xiě)出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案