函數(shù)y=
1-x
+
1+x
的最大值是
 
;最小值是
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)y2=1-x+1+x+2
(1+x)(1-x)
=2+2
1-x2
,可得y2的最值,從而可得y的最值.
解答: 解:函數(shù)y=
1-x
+
1+x
的定義域?yàn)閇-1,1],且y≥0.
又y2=1-x+1+x+2
(1+x)(1-x)
=2+2
1-x2
,
故x=0時(shí),y2有最大值等于4,故函數(shù)y有最大值為2;故x=±1時(shí),y2有最小值等于2,故函數(shù)y有最小值為
2
;
故答案為:2、
2
點(diǎn)評(píng):本題考查求函數(shù)的最大值的方法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,把函數(shù)平方,先求函數(shù)平方的最值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的△BF1F2的周長為4+2
2
,且∠BF1F2=45°,求這個(gè)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

約束條件
y≥-1
x-y≥2
3x+y≤14
,若使z=ax+y取得最大值的最優(yōu)解有無窮多個(gè),則實(shí)數(shù)a的取值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)求導(dǎo):f(x)=
ln(3x2+4x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(4m,m),圓C:x2+y2-2x-4y+3=0,判斷點(diǎn)P和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:cos
θ
2
cos
θ
22
cos
θ
23
…cos
θ
2n
=
sinθ
2nsin
θ
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
x
)=
x
1+x
,則f′(x)等于( 。
A、
x
1+x
B、-
x
1+x
C、
1
(1+x)2
D、-
1
(1+x)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}分別滿足a1a2…an=n(n-1)…2•1,b1+b2+…+bn=an2
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{
1
bnbn+1
}的前n項(xiàng)和為Sn,若對(duì)任意x∈R,anSn>-x2-2x+9恒成立,求自然數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):sinαcos5α-cosαsin5α

查看答案和解析>>

同步練習(xí)冊(cè)答案