函數(shù)y=
2x2-2x-8
的定義域是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可得到結(jié)論.
解答: 解:要使函數(shù)f(x)有意義,則2x2-2x-8≥0,
2x2-2x≥8,
則x2-2x≥3,
即x2-2x-3≥0,
解得x≥3或x≤-1,
即函數(shù)的定義域?yàn)椋?∞,-1]∪[3,+∞)
故答案為:(-∞,-1]∪[3,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=4x與曲線y=x3圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(π-α)=-
5
3
且α∈(π,
2
),則sin(
π
2
+
α
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=ax-ln(x+1)在點(diǎn)(0,0)處的切線方程為y=2x,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+f′(1)x2-x,則函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax-y+6=0與圓心為C的圓(x+1)2+(y-a)2=16相交于A、B兩點(diǎn),且△ABC是直角三角形,則實(shí)數(shù)a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=
1
2
+
2
22
+
3
23
+
4
24
+…+
n
2n
,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
2
x,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
21
01
,向量
b
=
10
2
.求向量
a
,使得A2a=b.

查看答案和解析>>

同步練習(xí)冊(cè)答案