甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每上崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;

(Ⅲ)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.

解:(Ⅰ)記甲、乙兩人同時(shí)參加A崗位服務(wù)為事件EA,那么

PEA)=

即甲、乙兩人同時(shí)參加A崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩個(gè)同時(shí)參加同一崗位服務(wù)為事件E,那么

PE)=

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

P)=1-P(E)=

(Ⅲ)隨機(jī)變量ξ可能取的值為1,2.事件“ξ=2”是指有兩人同時(shí)參加A崗位服務(wù),

Pξ=2)=

所以pξ-1)=1-Pξ=2)=.ξ的分布列是

ξ

1

2

P

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.(Ⅰ)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;(Ⅲ)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),ξ可取何值?請(qǐng)求出相應(yīng)的ξ值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(北京卷文18)甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二第二學(xué)期期末考試數(shù)學(xué)(文)試卷 題型:解答題

(本小題滿分12分)

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案