【題目】對于定義在上的函數(shù),若存在,使恒成立,則稱為“型函數(shù)”;若存在,使恒成立,則稱為“型函數(shù)”.已知函數(shù).

1)設(shè)函數(shù).,且為“型函數(shù)”,求的取值范圍;

2)設(shè)函數(shù).證明:當(dāng),為“1)型函數(shù)”;

3)若,證明存在唯一整數(shù),使得為“型函數(shù)”.

【答案】1;(2)證明見解析;(3)證明見解析.

【解析】

1)將代入,依題意,即恒成立,設(shè),求出函數(shù)的最小值即可得解;

2)分析可知,即證,令,,方法一:由不等式的性質(zhì)可知上單調(diào)遞減,在上單調(diào)遞增,故,即得證;方法二:令,再對函數(shù)求導(dǎo),可得當(dāng)時,,當(dāng)時,,進(jìn)而得到的單調(diào)性,由此得證;

3)問題等價于證明存在唯一整數(shù)恒成立,易知當(dāng)時,不合題意,故只需證明時符合題意即可,方法一:記,分當(dāng)以及當(dāng)時證明即可;

方法二:記,利用導(dǎo)數(shù)求其最大值小于0即可得證.

1時,.

因為為“型函數(shù)”,

所以恒成立,即恒成立.

設(shè),則恒成立,

所以上單調(diào)遞減,

所以1

所以的取值范圍是;

2)證明:當(dāng)時,要證為“1)型函數(shù)”,

即證,即證.

,則,

方法一:當(dāng)時,,,則

當(dāng)時,,,則;

所以上單調(diào)遞減,在上單調(diào)遞增,

1),又1,所以,

所以為“1)型函數(shù)”.

方法二:令,則

所以函數(shù)上單調(diào)遞增,又1,

所以當(dāng)時,,當(dāng)時,

所以上單調(diào)遞減,在上單調(diào)遞增,

以下同方法一.

3)證明:函數(shù)為“型函數(shù)”等價于恒成立,

當(dāng)時,,不合題意;

當(dāng)時,,不合題意;

當(dāng)時,

方法一:,

①當(dāng)時,

②當(dāng)時,,由(2)知,

所以,

綜上,存在唯一整數(shù),使得為“型函數(shù)”.

方法二:,,

,則,

所以上單調(diào)遞減.

易得,

所以;

又因為,

所以存在唯一零點,使得,

的最大值點,

所以,

注意到上單調(diào)遞增,

所以,所以.

綜上,存在唯一整數(shù),使得為“型函數(shù)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).證明:

1存在唯一的極值點;

2有且僅有兩個實根,且兩個實根互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用一個平行于底面的截面去截一個正棱錐,截面和底面間的幾何體叫正棱臺.如圖,在四棱臺中,分別為的中點.

(Ⅰ)求證:平面;

(Ⅱ)若側(cè)棱所在直線與上下底面中心的連線所成的角為,求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,,,,,點E上,且,將三角形沿線段折起到的位置,(如圖2.

(Ⅰ)求證:平面平面;

(Ⅱ)在線段上存在點F,滿足,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M,N是平面兩側(cè)的點,三棱錐所有棱長是2,,如圖.

1)求證:平面;

2)求平面與平面所成銳二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,平面,平面,.

1)求證:;

2)若,且二面角的大小為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為邊長為的菱形,側(cè)面為矩形,其中,平面,點的中點.

1)證明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰(zhàn)場的武漢,僅用了十余天就建成了小湯山模式的火神山醫(yī)院和雷神山醫(yī)院,再次體現(xiàn)了中國速度.隨著疫情發(fā)展,某地也需要參照小湯山模式建設(shè)臨時醫(yī)院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為貫徹落實健康第一的指導(dǎo)思想,切實加強學(xué)校體育工作,促進(jìn)學(xué)生積極參加體育鍛煉,養(yǎng)成良好的鍛煉習(xí)慣,提高體質(zhì)健康水平.某市抽調(diào)三所中學(xué)進(jìn)行中學(xué)生體育達(dá)標(biāo)測試,現(xiàn)簡稱為校、校、.現(xiàn)對本次測試進(jìn)行調(diào)查統(tǒng)計,得到測試成績排在前200名學(xué)生層次分布的餅狀圖、校前200名學(xué)生的分布條形圖,則下列結(jié)論不一定正確的是(

A.測試成績前200名學(xué)生中校人數(shù)超過校人數(shù)的2

B.測試成績前100名學(xué)生中校人數(shù)超過一半以上

C.測試成績前151—200名學(xué)生中校人數(shù)最多33

D.測試成績前51—100名學(xué)生中校人數(shù)多于校人數(shù)

查看答案和解析>>

同步練習(xí)冊答案