直線x+y+2=0上點(diǎn)到原點(diǎn)的距離的最小值為
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:根據(jù)點(diǎn)到直線的距離公式即可得到結(jié)論.
解答: 解:由點(diǎn)到直線的距離公式可得直線x+y+2=0上點(diǎn)到原點(diǎn)的距離的最小值d=
|2|
1+1
=
2
2
=
2
,
2
點(diǎn)評(píng):本題主要考查點(diǎn)到直線的距離公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.把所有由“一階比增函數(shù)”組成的集合記為A1,把所有由“二階比增函數(shù)”組成的集合記為A2
(1)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈A1且f(x)∉A2,求實(shí)數(shù)h的取值范圍
(2)已知f(x)∈A2,且存在常數(shù)k,使得對(duì)任意的x∈(0,+∞),都有f(x)<k,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(1-x)+log3(x+5).
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且滿足對(duì)任意x∈R,f(x+2)=f(x)成立,當(dāng)x∈(-1,0)時(shí),f(x)=2x,求當(dāng)x∈(2,3)時(shí),f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某天,甲要去銀行辦理儲(chǔ)蓄業(yè)務(wù),已知銀行的營(yíng)業(yè)時(shí)間為9:00至17:00,設(shè)甲在當(dāng)天13:00至18:00之間任何時(shí)間去銀行的可能性相同,那么甲去銀行恰好能辦理業(yè)務(wù)的概率是( 。
A、
1
3
B、
3
4
C、
5
8
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-5x+4≤0},集合B={x|x2-2ax+a+2≤0}.
(1)若B⊆A,求實(shí)數(shù)a的取值范圍;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AD=2BC=2,AB=1.點(diǎn)E在棱AB上,平面A1EC與棱C1D1相交于點(diǎn)F.
(Ⅰ)求證:A1F∥平面B1CE; 
(Ⅱ)求證:AC⊥平面CDD1C1;
(Ⅲ)寫出三棱錐B1-A1EF體積的取值范圍.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a2=2,Sn為其前n項(xiàng)和,且Sn=
an(n+1)
2
(n∈N*).
(1)求a1的值;
(2)求證:an=
n
n-1
an-1(n≥2);
(3)若bn=an•2 -an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(0,-
1
3
)
且斜率為k的直線l與橢圓C交于A、B兩點(diǎn),求證:以AB為直徑的圓必過y軸上的一定點(diǎn)M,并求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案