已知函數(shù).

(Ⅰ)設(shè),求的最小值;

(Ⅱ)如何上下平移的圖象,使得的圖象有公共點(diǎn)且在公共點(diǎn)處切線相同.

 

【答案】

() 1;(Ⅱ)的圖象向下平移1個(gè)單位后,兩函數(shù)圖象在公共點(diǎn)(1,0)處有相同的切線

【解析】

試題分析:()先求導(dǎo),再求導(dǎo)數(shù)等于0的根,解導(dǎo)數(shù)大于0、小于0的不等式得函數(shù)的單調(diào)區(qū)間。根據(jù)函數(shù)單調(diào)性求其最值。(Ⅱ)令的圖象有公共點(diǎn)即有解。公共點(diǎn)處切線相同.因?yàn)榍悬c(diǎn)為同一點(diǎn)只需斜率相等即可。由導(dǎo)數(shù)的幾何意義可知在切點(diǎn)處的導(dǎo)數(shù)就是在切點(diǎn)處切線的斜率,所以只需兩函數(shù)在切點(diǎn)處導(dǎo)數(shù)相等。解方程組即可求出。

試題解析:(),則2

解得, 3

時(shí),,當(dāng)時(shí),, 5

所以當(dāng)時(shí),達(dá)到最小,的最小值為1. 7

(Ⅱ)設(shè)上下平移的圖象為c個(gè)單位的函數(shù)解析式為.

設(shè)的公共點(diǎn)為.

依題意有: 10

解得

即將的圖象向下平移1個(gè)單位后,兩函數(shù)圖象在公共點(diǎn)(1,0)處有相同的切線. 13

考點(diǎn):1導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義;2利用導(dǎo)數(shù)研究函數(shù)性質(zhì)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年四川省眉山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)設(shè)x=x是函數(shù)y=f(x)的圖象的一條對稱軸,求g(2x)的值;
(2)求函數(shù)h(x)=f(x)+g(x),的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆重慶第49中學(xué)七校聯(lián)盟高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

已知函數(shù),.

(Ⅰ)設(shè),函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011315370341778155/SYS201301131537336677486442_ST.files/image006.png">,求函數(shù)的最值;

(Ⅱ)求使的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三12月月考理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517551503125493/SYS201205251757389843271479_ST.files/image002.png">(),設(shè)

(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

(2)求證:;

(3)求證:對于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市高三第二次模擬考試數(shù)學(xué)試題 題型:填空題

已知函數(shù)

(1)設(shè),且,求的值;

(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分) 已知函數(shù)

(1) 設(shè)F(x)= 上單調(diào)遞增,求的取值范圍。

(2)若函數(shù)的圖象有兩個(gè)不同的交點(diǎn)M、N,求的取值范圍;

(3)在(2)的條件下,過線段MN的中點(diǎn)作軸的垂線分別與的圖像和的圖像交S、T點(diǎn),以S為切點(diǎn)作的切線,以T為切點(diǎn)作的切線.是否存在實(shí)數(shù)使得,如果存在,求出的值;如果不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案