【題目】已知函數(shù)(, 為自然對數(shù)的底數(shù)),且曲線在點處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極值.
【答案】(1);(2)極小值為1;無極大值.
【解析】試題分析:(1)求出f(x)的導(dǎo)數(shù),依題意,f′(1)=0,從而可求得a的值;
(2),分①a≤0時②a>0討論,可知f(x)在∈(﹣∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,從而可求其極值.
試題解析:
(Ⅰ)由,得.
又曲線在點處的切線平行于軸,
得,即,解得.
(Ⅱ) ,
①當(dāng)時, , 為上的增函數(shù),所以函數(shù)無極值.
②當(dāng)時,令,得, .
,; ,.
所以在上單調(diào)遞減,在上單調(diào)遞增,
故在處取得極小值,且極小值為,無極大值.
綜上,當(dāng)時,函數(shù)無極值;
當(dāng), 在處取得極小值,無極大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個極值點且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點P
(1)證明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=sin(ωx+ )向右平移 個單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對稱,則ω的最小正值為( )
A.1
B.2
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,在x軸的上方作半徑為1的圓Γ,與x軸相切于坐標(biāo)原點O.平行于x軸的直線l1與y軸交點的縱坐標(biāo)為-1,A(x,y)是圓Γ外一動點,A與圓Γ上的點的最小距離比A到l1的距離小1.
(Ⅰ)求動點A的軌跡方程;
(Ⅱ)設(shè)l2是圓Γ平行于x軸的切線,試探究在y軸上是否存在一定點B,使得以AB為直徑的圓截直線l2所得的弦長不變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),命題,;命題.
(1)若為真命題,求的取值范圍;
(2)若為真命題,求的取值范圍;
(3)若“”為假命題,“”為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)已知圓有以下性質(zhì):
①過圓上一點的圓的切線方程是.
②若為圓外一點,過作圓的兩條切線,切點分別為,則直線的方程為.
③若不在坐標(biāo)軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即,且平分線段.
(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點的切線方程(不要求證明);
(2)過橢圓外一點作兩直線,與橢圓相切于兩點,求過兩點的直線方程;
(3)若過橢圓外一點(不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點,求證:為定值,且平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機抽取了人進行問卷調(diào)查,并且做出了各個年齡段的頻率分布直方圖(部分)如圖所示,同時對人對這“開放小區(qū)”認(rèn)同情況進行統(tǒng)計得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會,然后從這6人中隨機抽取2人作進一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時,試比較 和ex﹣1+a哪個更靠近lnx,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com