(本小題14分)
已知等比數(shù)列滿足,且是,的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
(1)(2)使成立的正整數(shù)的最小值為10
解析試題分析:解:(Ⅰ)設(shè)等比數(shù)列的首項(xiàng)為,公比為,
依題意,有即
由 得 ,解得或.
當(dāng)時(shí),不合題意舍;
當(dāng)時(shí),代入(2)得,所以, .
(Ⅱ) .
所以
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/56/f/pfz8v3.png" style="vertical-align:middle;" />,所以,
即,解得或.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/22/1/1np2d4.png" style="vertical-align:middle;" />,故使成立的正整數(shù)的最小值為10 .
考點(diǎn):等差數(shù)列和等比數(shù)列
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于等差數(shù)列和等比數(shù)列的通項(xiàng)公式和性質(zhì)的熟練運(yùn)用,以及分組求和,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,數(shù)列滿足,數(shù)列滿足;數(shù)列為公比大于的等比數(shù)列,且為方程的兩個(gè)不相等的實(shí)根.
(Ⅰ)求數(shù)列和數(shù)列的通項(xiàng)公式;
(Ⅱ)將數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng),……,第項(xiàng),……刪去后剩余的項(xiàng)按從小到大的順序排成新數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)的和Sn=
⑴ 求{an}的通項(xiàng)公式;
⑵ 設(shè)等比數(shù)列{bn}的首項(xiàng)為b,公比為2,前n項(xiàng)的和為Tn.若對(duì)任意n∈N*,Sn≤Tn
均成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三個(gè)實(shí)數(shù)a、b、c成等差數(shù)列,且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求a、b、c的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)設(shè)是一個(gè)公差為的等差數(shù)列,它的前10項(xiàng)和且,,成等比數(shù)列.(Ⅰ)證明; (Ⅱ)求公差的值和數(shù)列的通項(xiàng)公式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)等比數(shù)列中,已知.
(1)求數(shù)列的通項(xiàng);
(2)若等差數(shù)列,,求數(shù)列前n項(xiàng)和,并求最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com