5.在長方體ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3.
(1)求BD1與平面ABCD所成的角的余弦;
(2)求異面直線A1B與B1C所成角的余弦值.

分析 (1)連接BD1,BD,由DD1⊥平面ABCD,得到∠DBD1即BD1與平面ABCD所成的角,分別利用勾股定理求出BD與BD1的長,即可求出BD1與平面ABCD所成的角的余弦;
(2)連接A1D,由A1D∥B1C,得到∠BA1D為異面直線A1B與B1C所成的角,在△A1DB中,利用余弦定理求出cosBA1D的值即可.

解答 解:(1)連接BD1,BD,
∵DD1⊥平面ABCD,
∴∠DBD1即BD1與平面ABCD所成的角,
∵在Rt△ABD中,AD=AB=4,
∴根據(jù)勾股定理得:BD=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,
∵在Rt△BDD1中,DD1=3,
∴根據(jù)勾股定理得:BD1=$\sqrt{(4\sqrt{2})^{2}+{3}^{2}}$=$\sqrt{41}$,
則cos∠DBD1=$\frac{D{D}_{1}}{BD}$=$\frac{4\sqrt{2}}{\sqrt{41}}$=$\frac{4\sqrt{82}}{41}$;
(2)連接A1D,
∵A1D∥B1C,
∴∠BA1D為異面直線A1B與B1C所成的角,
在△A1DB中,A1B=A1D=5,BD=4$\sqrt{2}$,
則cos∠BA1D=$\frac{{A}_{1}{B}^{2}+{A}_{1}{D}^{2}-B{D}^{2}}{2{A}_{1}B•{A}_{1}D}$=$\frac{25+25-32}{50}$=$\frac{9}{25}$.

點(diǎn)評(píng) 此題考查了直線與平面所成的角,異面直線及其所成的角,找出直線與平面所成的角、異面直線所成的角是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個(gè)幾何體的三視圖是三個(gè)直角三角形,尺寸如圖所示,求表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線kx-y+k=0與圓x2+y2-2x=0有公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$B.$(-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞)$C.$[-\sqrt{3},\sqrt{3}]$D.$(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題:“?x>0,x2+x-1>0”的否定是?x>0,x2+x-1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R.
(Ⅰ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$]時(shí),求函數(shù)f(x)的最小值和最大值;
(Ⅱ)將函數(shù)y=f(x)的圖象的橫坐標(biāo)伸長為原來的2倍,再將函數(shù)圖象向上平移1個(gè)單位,得到函數(shù)y=g(x),求函數(shù)y=|g(x)|的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0
(Ⅰ)當(dāng)a∈(0,4),b=1時(shí),求函數(shù)f(x)在[0,2]上的最小值;
(Ⅱ)若存在實(shí)數(shù)c,使函數(shù)g(x)=f(x)-c有四個(gè)不同的零點(diǎn),求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)為偶函數(shù),且f(x)在[0,+∞)單調(diào)遞增,若f(ax+1)-f(x-2)≤0在$x∈[\frac{1}{2},1]$上恒成立,則實(shí)數(shù)a的取值范圍是[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對(duì)于函數(shù)y=g(x),部分x與y的對(duì)應(yīng)關(guān)系如下表:
x123456
y247518
數(shù)列{xn}滿足:x1=2,且對(duì)于任意n∈N*,點(diǎn)(xn,xn+1)都在函數(shù)y=g(x)的圖象上,則x1+x2+…+x2015=( 。
A.4054B.5046C.5075D.6047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(1,0),點(diǎn)A(4,4),點(diǎn)B為直線y=2x上一個(gè)動(dòng)點(diǎn).若$\overrightarrow{AB}$∥$\overrightarrow{a}$,則點(diǎn)B的坐標(biāo)為(2,4).

查看答案和解析>>

同步練習(xí)冊答案