總計(2)若以45歲為分界點.從不支持“延遲退休 的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人①抽到1人是45歲以下時.求抽到的另一人是45歲以上的概率.②記抽到45歲以上的人數(shù)為.求隨機變量的分布列及數(shù)學期望.">

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研.人社部從網(wǎng)上年齡在1565歲的人群中隨機調查100人,調査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下

年齡

支持“延遲退休”的人數(shù)

15

5

15

28

17

(1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

/td>

總計

(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人

①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

【答案】(1)見解析;(2)見解析.

【解析】分析:(1)根據(jù)頻率分布直方圖得到45歲以下與45歲以上的人數(shù),由此可得列聯(lián)表,求得后在結合臨界值表可得結論.(2)①結合條件概率的計算方法求解;②由題意可得的可能取值為0,1,2,分別求出對應的概率后可得分布列和期望.

詳解:

(1)由頻率分布直方圖知45歲以下與45歲以上各50人,

故可得列聯(lián)表如下:

45歲以下

45歲以上

總計

支持

35

45

80

不支持

15

5

20

總計

50

50

100

由列聯(lián)表可得,

所以在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異.

(2)①設“抽到1人是45歲以下”為事件A,“抽到的另一人是45歲以上”為事件B,

,

,

即抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率為

②從不支持“延遲退休”的人中抽取8人,則45歲以下的應抽6人,45歲以上的應抽2人.

由題意得的可能取值為0,1,2.

,.

故隨機變量的分布列為:

0

1

2

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù).

1)求實數(shù)的值,并畫出函數(shù)的圖象;

2)若函數(shù)在區(qū)間上是增函數(shù),結合函數(shù)的圖象,求實數(shù)的取值范圍;

3)結合圖象,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2annN*).

1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;

(2)若bn=2n+1an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式2010n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)有_________

(1)已知變量滿足關系,則正相關;(2)線性回歸直線必過點 ;

(3)對于分類變量的隨機變量,越大說明“有關系”的可信度越大

(4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關指數(shù)的值越大,說明擬合的效果越好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入21世紀以來,南康區(qū)家具產(chǎn)業(yè)快速發(fā)展,為廣大市民提供了數(shù)十萬就業(yè)崗位,提高了廣大市民的收入,也帶動南康和周邊縣市的經(jīng)濟快速發(fā)展.同時,由于生產(chǎn)設備相對落后,生產(chǎn)過程中產(chǎn)生大量粉塵、廢氣,給人們的健康、交通安全等帶來了嚴重影響.經(jīng)研究發(fā)現(xiàn),工業(yè)廢氣、粉塵等污染物排放是霧霾形成和持續(xù)的重要原因,治理污染刻不容緩.為此,某工廠新購置并安裝了先進的廢氣、粉塵處理設備,使產(chǎn)生的廢氣、粉塵經(jīng)過過濾后再排放,以降低對空氣的污染.已知過濾過程中廢氣粉塵污染物的數(shù)量(單位:)與過濾時間 (單位:)間的關系為(均為非零常數(shù),為自然對數(shù)的底數(shù))其中時的污染物數(shù)量.若過濾后還剩余的污染物.

1)求常數(shù)的值.

2)試計算污染物減少到至少需要多長時間(精確到.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(

A.函數(shù)在區(qū)間上有且只有個零點

B.若函數(shù),則

C.如果函數(shù)上單調遞增,那么它在上單調遞減

D.若函數(shù)的圖象關于點對稱,則函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直四棱柱的底面是直角梯形,,、分別是棱、上的動點,且,,.

1)證明:無論點怎樣運動,四邊形都為矩形;

2)當時,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的單調區(qū)間;

(2)若有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案