【題目】設甲、乙、丙三人進行圍棋比賽,每局兩人參加,沒有平局.在一局比賽中,甲勝乙的概率為 ,甲勝丙的概率為 ,乙勝丙的概率為 .比賽順序為:首先由甲和乙進行第一局的比賽,再由獲勝者與未參加比賽的選手進行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結束.
(1)求只進行了三局比賽,比賽就結束的概率;
(2)記從比賽開始到比賽結束所需比賽的局數(shù)為ξ,求ξ的概率分布列和數(shù)學期望Eξ.
【答案】
(1)解:由題意只進行三局比賽,即丙獲勝比賽就結束,
故可得所求的概率為
(2)解:由題意可得ξ=2,3,4,且 ,
,
故ξ的分布列為:
ξ | 2 | 3 | 4 |
P |
故數(shù)學期望
【解析】(1)只進行三局比賽,即丙獲勝比賽就結束,由互斥,獨立事件的概率公式可得;(2)由題意可得ξ=2,3,4,分別可得其概率,可得分布列,可得期望.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】一個人以6米/秒的勻速度去追趕停在交通燈前的汽車,當他離汽車25米時交通燈由紅變綠,汽車開始作變速直線行駛(汽車與人的前進方向相同),汽車在時刻t的速度為v(t)=t米/秒,那么,此人( )
A.可在7秒內追上汽車
B.可在9秒內追上汽車
C.不能追上汽車,但其間最近距離為14米
D.不能追上汽車,但其間最近距離為7米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果如下:
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為實數(shù),函數(shù).
(1)若是函數(shù)的一個極值點,求實數(shù)的取值;
(2)設,若,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線交于兩點, 是的中點,過作軸的垂線交于點.
(1)證明:拋物線在點處的切線與平行;
(2)是否存在實數(shù),使以為直徑的圓經過點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線方程為
l:y=3x+1,且當x=時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的偶函數(shù),當x>0時, .
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)的單調性,并求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com