17.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{1+x}$.
(Ⅰ)若a=2,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)≥0對x∈(-1,+∞)恒成立,求實數(shù)a的取值范圍.

分析 (Ⅰ)當a=2時,$f(x)=ln(1+x)-\frac{2x}{1+x}$,f(1)=ln2-1,k=f′(1)=0,由此能求出切線方程.
(Ⅱ)${f^'}(x)=\frac{1}{1+x}-\frac{{a({x+1})-ax}}{{{{({1+x})}^2}}}=\frac{x+1-a}{{{{({1+x})}^2}}}=\frac{{x-({a-1})}}{{{{({x+1})}^2}}}$,由此利用導數(shù)性質和分類討論思想能求出當且僅當a=1時f(x)≥0恒成立.

解答 解:(Ⅰ)當a=2時,$f(x)=ln(1+x)-\frac{2x}{1+x}$,f(1)=ln2-1,…(1分),
${f^'}(x)=\frac{1}{1+x}-\frac{{2({x+1})-2x}}{{{{({1+x})}^2}}}=\frac{x-1}{{{{({1+x})}^2}}}$,…(2分)
∴k=f′(1)=0,…(3分)
∴切線方程為y=ln2-1.…(4分)
(Ⅱ)${f^'}(x)=\frac{1}{1+x}-\frac{{a({x+1})-ax}}{{{{({1+x})}^2}}}=\frac{x+1-a}{{{{({1+x})}^2}}}=\frac{{x-({a-1})}}{{{{({x+1})}^2}}}$.
①當a≤0時,a-1≤-1,又x∈(-1,+∞),
∴x-(a-1)>0,∴f′(x)>0,∴f(x)在(-1,+∞)上為增函數(shù),…(6分)
又∵f(0)=0,∴當-1<x<0時,f(x)<0,與題意不符.…(7分)
②當a>0,令f′(x)=0,得x=a-1>-1,
且-1<x<a-1時,f′(x)<0,x>a-1時,f′(x)>0,
∴f(x)在x=a-1時有極小值,也是最小值,
∴f(x)min=f(a-1)=lna-a+1≥0,…(9分)
記g(x)=lnx-x+1,則${g^'}(x)=\frac{1}{x}-1=-\frac{x-1}{x}$,
令g′(x)=0,得x=1,
當0<x<1時,g′(x)>0,當x>1時,g′(x)<0,
∴g(x)在x=1處有極大值就是最大值為g(1)=0,…(11分)
∴l(xiāng)na-a+1最大值為0,
又lna-a+1≥0,故a=1,
即當且僅當a=1時f(x)≥0恒成立.…(12分)

點評 本題考查切線方程的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.觀察如圖數(shù)表:

設1033是該表第m行的第n個數(shù),則m+n=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖是函數(shù)y=f(x)的導函數(shù)f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(-2,1)上f(x)是增函數(shù)B.在(1,3)上f(x)是減函數(shù)
C.當x=4時,f(x)取極大值D.在(4,5)上f(x)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零點,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,則an=$\frac{{3{n^2}-n}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓O的半徑為1,PA,PB為該圓的兩條切線,A,B為兩切點,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值(  )
A.2$\sqrt{2}$-3B.2$\sqrt{2}$-1C.2$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.觀察下列的規(guī)律:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…則第89個是(  )
A.$\frac{1}{8}$B.$\frac{2}{13}$C.$\frac{11}{3}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=AC=2,O為AC的中點,PO⊥平面ABCD,M為PD的中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)若三棱錐D-MAC的體積為$\frac{\sqrt{3}}{6}$,求平面MAC與平面PAB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)討論函數(shù)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案