設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意正整數(shù)n都有Sn,證明:{an}是等差數(shù)列.

答案:
解析:
<strike id="usqyo"></strike>
  • Sn

    ∴當(dāng)n≥2時(shí)

    Sn1

    anSnSn1

    n(a1an)- (n-1)(a1an1)

    同理an1 (n+1)(a1an1)-n(a1an)

    an1an (n+1)(a1an1)-n(a1an)+ (n-1)(a1an1)

    (n+1)an1nan (n-1)an-1

    ∴2an1-2annan1an1-2nannan1an1(1-n)an1+(1-n)an1=2(1-n)an(n≥2)
    提示:

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    等差數(shù)列{an}中,a1=5,a4=-1;設(shè)數(shù)列{丨an丨}的前n項(xiàng)和為Sn,則S6=( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d(a1∈Z,d∈Z),前n項(xiàng)的和為Sn,且S7=49,24<S5<26.
    (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
    (Ⅱ)設(shè)數(shù)列{
    1anan+1
    }
    的前n項(xiàng)的和為Tn,求Tn

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-2n(n-1).
    (Ⅰ)求a2,a3,a4,并求出數(shù)列{an}的通項(xiàng)公式;
    (Ⅱ)設(shè)數(shù)列{{
    1anan+1
    }
    }的前n項(xiàng)和為Tn,試求Tn的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=nan-2n(n-1).
    (Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求出an的表達(dá)式;
    (Ⅱ)設(shè)數(shù)列{
    1anan+1
    }的前n項(xiàng)和Tn,試求Tn的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)數(shù)列{an}的前n項(xiàng)和Sn=4-an-.

    (1)試求an+1與an的關(guān)系;(2)求數(shù)列{an}的通項(xiàng)公式.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案