14.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值是(  )
A.-1B.2C.3D.-1或2

分析 因?yàn)橹挥衴=xα型的函數(shù)才是冪函數(shù),所以只有m2-m-1=1函數(shù)f(x)=(m2-m-1)xm才是冪函數(shù),又函數(shù)f(x)=(m2-m-1)xm在x∈(0,+∞)上為增函數(shù),所以冪指數(shù)應(yīng)大于0.

解答 解:要使函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),
則 $\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{m>0}\end{array}\right.$,
解得:m=2.
故選:B.

點(diǎn)評 本題考查了冪函數(shù)的概念及其單調(diào)性,解答的關(guān)鍵是掌握冪函數(shù)定義及性質(zhì),冪函數(shù)在冪指數(shù)大于0時(shí),在(0,+∞)上為增函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列關(guān)系中正確的是(  )
A.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$B.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$
C.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$D.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知?jiǎng)訄AM過定點(diǎn)F(1,0),且與直線x=-1相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過點(diǎn)F且斜率為2的直線交軌跡C于S,T兩點(diǎn),求弦ST的長度;
(3)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,三個(gè)內(nèi)角A,B,C的對邊分別是a,b,c,若a=3,b=4,sinC=$\frac{1}{2}$,則此三角形的面積是(  )
A.8B.6C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖:若0<a<1,函數(shù)y=ax與y=x+a的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.當(dāng)0<a<1時(shí),不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$的解集是($\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=cos(2x+\frac{2π}{3})+2{cos^2}x$,
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)將函數(shù)f(x)圖象向右平移$\frac{π}{3}$個(gè)單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.運(yùn)行下面的程序中,若輸入x的值為5,則輸出的y的值為(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個(gè)命題中:
①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實(shí)根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若ab≠0,則a≠0”的否命題.
其中真命題的序號是( 。
A.②、③B.③、④C.①、④D.①、②

查看答案和解析>>

同步練習(xí)冊答案