P是△ABC所在平面上一點(diǎn),若
PA
PB
=
PB
PC
=
PC
PA
,則P是△ABC的
 
心.
分析:根據(jù)
PA
PB
=
PB
PC
,移向并根據(jù)向量的數(shù)量積的運(yùn)算法則,得到
PB
•(
PA
-
PC)
=0
,因此有PB⊥CA,同理可得PA⊥BC,PC⊥AB,根據(jù)三角形五心的定義,即可求得結(jié)果.
解答:解:∵
PA
PB
=
PB
PC
,
PB
•(
PA
-
PC)
=0
,即
PB
CA
=0
,
∴PB⊥CA,
同理可得PA⊥BC,PC⊥AB,
∴P是△ABC的垂心.
故答案為:垂.
點(diǎn)評(píng):此題是個(gè)中檔題.考查向量在幾何中的應(yīng)用和向量垂直的充要條件,以及三角形五心的定義,綜合性強(qiáng),考查學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是△ABC所在平面上一點(diǎn),且
CA
-
CP
=
CP
-
CB
,若△ABC的面積為2,則△PBC面積為( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是△ABC所在平面內(nèi)的一點(diǎn),
BC
+
BA
=2
BP
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AB
AC
=0

(1)若P是△ABC所在平面上一點(diǎn),且|
AP
|=2,∠CAP為銳角,
AP
AC
=2
AP
AB
=2
,求|
AB
+
AC
+
AP
|的最小值.
(2)滿足條件(1)的點(diǎn)P能否在△ABC的邊BC上?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是△ABC所在平面外一點(diǎn),點(diǎn)O是點(diǎn)P在平面ABC上的射影.若PA=PB=PC,則O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是△ABC所在平面內(nèi)一點(diǎn),若(15sinA)
PA
+(12sinB)
PB
+(10sinC)
PC
=
0
BA
+
BC
=3
BP
則下列正確的命題序號(hào)是
①③④
①③④

①P是△ABC的重心    ②△ABC是銳角三角形  ③△ABC的三邊長(zhǎng)有可能是三個(gè)連續(xù)的整數(shù)  ④∠C=2∠A.

查看答案和解析>>

同步練習(xí)冊(cè)答案