在正三棱柱ABC-A1B1C1中,已知AB=1,點(diǎn)D在棱BB1上,且BD=1,則AD與平面AA1CC1所成角的正切值為(  )
A、
3
B、1
C、
10
4
D、
15
5
分析:根據(jù)題意畫出圖形,過B作BF⊥AC,過B1作B1E⊥A1C1,連接EF,過D作DG⊥EF,連接AG,證明DG⊥面AA1C1C,∠DAG=α,解直角三角形ADG即可.
解答:精英家教網(wǎng)解:如圖所示,過B作BF⊥AC,過B1作B1E⊥A1C1,連接EF,過D作DG⊥EF,連接AG,
在正三棱柱中,有B1E⊥面AA1C1C,BF⊥面AA1C1C,
故DG⊥面AA1C1C,
∴∠DAG=α,可求得DG=BF=
3
2
,
AG=
AF2+FG2
=
5
2
,
故tanα=
DG
AG
=
15
5
     
故選D.
點(diǎn)評:考查直線和平面所成的角,關(guān)鍵是找到斜線在平面內(nèi)的射影,把空間角轉(zhuǎn)化為平面角求解,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=AB,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:平面A1BD⊥平面ACC1A1;
(3)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,所有棱的長度都是1,M是BC邊的中點(diǎn),P是AA1邊上的點(diǎn),且PA=
6
4

(1)求:點(diǎn)P到棱BC的距離;
(2)問:在側(cè)棱CC1上是否存在點(diǎn)N,使得異面直線AB1與MN所成角為45°?若存在,請說明點(diǎn)N的位置;若不存在,請說明理由;
(3)定義:如果平面α經(jīng)過線段AA′的中點(diǎn),并與線段AA′垂直,則稱點(diǎn)A關(guān)于平面α的對稱點(diǎn)為點(diǎn)A′.設(shè)點(diǎn)A關(guān)于平面PBC的對稱點(diǎn)為A′,求:點(diǎn)A′到平面AMC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A'B'C'中,AB=2,若二面角C'-AB-C的大小為60°,則點(diǎn)C到平面ABC'的距離為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正三棱柱ABC-ABC中,AB=3,高為2,則它的外接球上A、B兩點(diǎn)的球面距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省綿陽中學(xué)高考適應(yīng)性檢測數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖,在正三棱柱ABC-A'B'C'中,AB=2,若二面角C'-AB-C的大小為60°,則點(diǎn)C到平面ABC'的距離為   

查看答案和解析>>

同步練習(xí)冊答案