A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{3}{4}$ |
分析 設(shè)直線AB的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(α為參數(shù)),代入橢圓方程可得:(3+sin2α)t2+6tcosα-9=0,利用根與系數(shù)的關(guān)系可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$.利用$\frac{1}{m}$+$\frac{1}{n}$=$|\frac{{t}_{1}-{t}_{2}}{{t}_{1}{t}_{2}}|$即可得出.
解答 解:設(shè)直線AB的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(α為參數(shù)),
代入橢圓方程可得:(3+sin2α)t2+6tcosα-9=0,
∴t1+t2=$\frac{-6cosα}{3+si{n}^{2}α}$,t1t2=-$\frac{9}{3+si{n}^{2}α}$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{12}{3+si{n}^{2}α}$.
取m=t1>0,n=-t2>0,
則$\frac{1}{m}$+$\frac{1}{n}$=$|\frac{{t}_{1}-{t}_{2}}{{t}_{1}{t}_{2}}|$=$\frac{4}{3}$..
故選:B.
點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、弦長公式、直線的參數(shù)方程的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3} | B. | {5,6} | C. | {4,5,6} | D. | {3,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{3}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | [2,3) | C. | (2,3) | D. | [3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com