11.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.

分析 利用向量數(shù)量積運(yùn)算性質(zhì)、夾角公式即可得出.

解答 解:∵向量$\overrightarrow{a}$=(-1,0),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴$|\overrightarrow{a}|$=1,$|\overrightarrow|$=$\sqrt{(\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=1,
$\overrightarrow{a}•\overrightarrow$=-$\frac{1}{2}$.
∴$cos<\overrightarrow{a},\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{-\frac{1}{2}}{1×1}$=-$\frac{1}{2}$,
則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查了向量數(shù)量積運(yùn)算性質(zhì)、夾角公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知兩個(gè)集合A={x|m<$\frac{1-x}{x}$},B={x|log${\;}_{\frac{1}{2}}$x>2}p:實(shí)數(shù)m為小于5的正整數(shù),q:“x∈A”是“x∈B”的必要不充分條件.
(1)若p是真命題,求A∩B;
(2)若p且q為真命題,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\frac{2}{si{n}^{2}x}$$+\frac{8}{1+co{s}^{2}x}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知平面向量$\overrightarrow{m}$=(2cosx,sinx),$\overrightarrow{n}$=(sinx,2sinx)(x∈R),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(1)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得到g(x),求函數(shù)g(x)的最小正周期以及對(duì)稱軸方程;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.解下列各不等式:
(1)|$\frac{1}{3}$x|≥7;       
(2)|10x|<$\frac{2}{5}$;       
(3)|x-6|<0.1      
(4)3≤|8-x|;
(5)|2x+5|<6;     
(6)|4x-1|≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)y=x2-4x+5,x∈[0,3]的值域是[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|x2-x<0},B={x|x2+2mx+2m+1<0},A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.解不等式組$\left\{\begin{array}{l}{x-3(x-2)>1}\\{\frac{2x-1}{5}≥\frac{x+1}{2.}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出平面可行域(如圖),若使目標(biāo)函數(shù)z=ax+y取最大值的最優(yōu)解有無(wú)窮多個(gè),則a=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案