已知函數(shù)f(x)cosx(cosx-
3
sinx)(x∈R)
(Ⅰ)寫出f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,A、B、C所對(duì)的邊分別是a、b、c,若f(A)=0,A∈(0,
π
2
),且(1+
3
)c=2b.求角C.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,余弦定理
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(Ⅰ)通過二倍角公式和兩角和公式對(duì)函數(shù)解析式進(jìn)行化簡,然后利用余弦定理的圖象和性質(zhì)求得其單調(diào)減區(qū)間.
(Ⅱ)利用f(A)=0求得cos(2A+
π
3
)的值,進(jìn)而求得A,然后通過正弦定理把(1+
3
)c=2b轉(zhuǎn)化成角的正弦的關(guān)系式,化簡整理求得tanC的值,進(jìn)而求得C.
解答: 解:(Ⅰ)f(x)=cosx(cosx-
3
sinx)=cos2x-
3
sinxcosx=
1
2
cos2x+
1
2
-
3
2
sin2x=cos(2x+
π
3
)+
1
2

∴當(dāng)2kπ≤2x+
π
3
≤2kπ+π,k∈Z時(shí),即kπ-
π
6
x≤kπ+
π
3
時(shí),函數(shù)單調(diào)減,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為:[kπ-
π
6
,kπ+
π
3
](k∈Z).
(Ⅱ)由(Ⅰ)知,f(x)=cos(2x+
π
3
)+
1
2

∴f(A)=cos(2A+
π
3
)+
1
2
=0
∴cos(2A+
π
3
)=-
1
2
,
∵A∈(0,
π
2
),
π
3
<2A+
π
3
3

∴2A+
π
3
=
3
,
∴A=
π
6

∵(1+
3
)c=2b.
∴(1+
3
)sinC=2sinB,
∴(1+
3
)sinC=2sin(π-
π
6
-C)=2sin(
6
-C)=2(sin
6
cosC-cos
6
sinC)=cosC+
3
sinC,
∴cosC=sinC,即tanC=1,
∴C=
π
4
點(diǎn)評(píng):本題主要考查三角函數(shù)恒等變換的應(yīng)用,正弦定理的應(yīng)用.注重對(duì)基礎(chǔ)知識(shí)和數(shù)學(xué)運(yùn)算能力的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙、丙三人參加某電視臺(tái)的應(yīng)聘節(jié)目《非你莫屬》,若甲應(yīng)聘成功的概率為
1
2
,乙、丙應(yīng)聘成功的概率均為
t
2
(0<t<2),且三個(gè)人是否應(yīng)聘成功是相互獨(dú)立的.
(Ⅰ)若乙、丙有且只有一個(gè)人應(yīng)聘成功的概率等于甲應(yīng)聘成功是相互獨(dú)立的,求t的值;
(Ⅱ)記應(yīng)聘成功的人數(shù)為ξ,若當(dāng)且僅當(dāng)ξ為2時(shí)概率最大,求E(ξ)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+bx,g(x)=alnx+x(a≠0)
(1)若函數(shù)f(x)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當(dāng)b=0且a>0時(shí),令F(x)=
f(x),x<1
g(x)-x,x≥1
,P(x1,F(xiàn)(x1)),Q(x2,F(xiàn)(x2))為曲線y=F(x)上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知箱子里裝有4張大小、形狀都相同的卡片,標(biāo)號(hào)分別為1,2,3,4.
(Ⅰ)從箱子中任取兩張卡片,求兩張卡片的標(biāo)號(hào)之和不小于5的概率;
(Ⅱ)從箱子中任意取出一張卡片,記下它的標(biāo)號(hào)m,然后再放回箱子中;第二次再從箱子中任取一張卡片,記下它的標(biāo)號(hào)n,求使得冪函數(shù)f(x)=(m-n)2x
m
n
圖象關(guān)于y軸對(duì)稱的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
cos2x+
3
2
sinx•cosx-
1
4

(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若a是第一象限的角,且f(
a
2
-
π
12
)=
3
4
,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

節(jié)日期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的順序,隨機(jī)抽取第一輛汽車后,每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下圖的頻率分布直方圖.
(Ⅰ)請(qǐng)直接回答這種抽樣方法是什么抽樣方法?并估計(jì)出這40輛車速的中位數(shù);
(Ⅱ)設(shè)車速在[80,85)的車輛為A1,A2,…,An(m為車速在[80,85)上的頻數(shù)),車速在[85,90)的車輛為B1,B2,…,Bn(n為車速在[85,90)上的頻數(shù)),從車速在[80,90)的車輛中任意抽取2輛共有幾種情況?請(qǐng)列舉出所有的情況,并求抽取的2輛車的車速都在[85,90)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+ax2+blnx,其對(duì)應(yīng)的圖象為曲線C;若曲線C過點(diǎn)P(1,0),且在點(diǎn)P(1,0)處的切線斜率k=2,
(1)求函數(shù)y=f(x)的解析式;
(2)證明不等式f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=msinx+
3
cosx,(m>0)的最大值為2.
(1)求函數(shù)f(x)在[0,π]上的值域;
(2)已知△ABC外接圓半徑R=2,f(A-
π
3
)+f(B-
π
3
)=8sinAsinB,角A,B所對(duì)的邊分別是a,b,求
1
a
+
1
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先將函數(shù)f(x)=2sinxcosx的圖象向左平移
π
4
個(gè)長度單位,再保持所有點(diǎn)的縱坐標(biāo)不變橫坐標(biāo)壓縮為原來的
1
2
,得到函數(shù)g(x)的圖象,則g(x)解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案