【題目】某學(xué)校對(duì)甲、乙兩個(gè)班級(jí)進(jìn)行了物理測驗(yàn),成績統(tǒng)計(jì)如下(每班50人):
(1)估計(jì)甲班的平均成績;
(2)成績不低于80分記為“優(yōu)秀”.請(qǐng)完成下面的列聯(lián)表,并判斷是否有85%的把握認(rèn)為:“成績優(yōu)秀”與所在教學(xué)班級(jí)有關(guān)?
(3)從兩個(gè)班級(jí),成績?cè)?/span>的學(xué)生中任選2人,記事件為“選出的2人中恰有1人來自甲班”.求事件的概率.
附:
【答案】(1)80.8;(2)有85%的把握認(rèn)為“成績優(yōu)秀”與所在教學(xué)班級(jí)有關(guān);(3).
【解析】試題分析:(1)在頻率分布直方圖中,平均數(shù)的計(jì)算方法:每個(gè)小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和,算出甲班的成績;(2)利用已知圖形完成列聯(lián)表,算出卡方約等于,故 85%的把握認(rèn)為“成績優(yōu)秀”與所在教學(xué)班級(jí)有關(guān);(3)采用列舉法求出事件A的概率。
試題解析:(1)估計(jì),甲班的平均成績?yōu)椋?/span>
.
(2)列聯(lián)表如下:
成績優(yōu)秀 | 成績不優(yōu)秀 | 總計(jì) | |
甲班 | 28 | 22 | 50 |
乙班 | 20 | 30 | 50 |
總計(jì) | 48 | 52 | 100 |
.
有85%的把握認(rèn)為“成績優(yōu)秀”與所在教學(xué)班級(jí)有關(guān).
(3)成績?cè)趦?nèi),甲班的2人分別記為, ;乙班的4人分別記為, , , .
總的基本事件有:
, , , , , , , , , , , , , , ,共15個(gè).
其中事件包含的基本事件有: , , , , , , , ,共8個(gè).
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計(jì) | |
支持“生育二胎” | a= | c= | |
不支持“生育二胎” | b= | d= | |
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附表:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.
(1)求證:BC∥EF;
(2)求三棱錐B﹣ADE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 + 的最小值為( )
A.4
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),對(duì)任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且當(dāng)x<0時(shí),f(x)>0.
(1)驗(yàn)證函數(shù)f(x)=lg 是否滿足這些條件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,試解關(guān)于x的方程f(x)=﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組 表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的中心在原點(diǎn),離心率為 ,右焦點(diǎn)到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點(diǎn)為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名運(yùn)動(dòng)員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計(jì)算);
(2)若將頻率視為概率,對(duì)運(yùn)動(dòng)員甲在今后三次測試成績進(jìn)行預(yù)測,記這三次成績高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com