【題目】已知函數(shù)f(x)的定義域為(﹣1,1),對任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且當x<0時,f(x)>0.
(1)驗證函數(shù)f(x)=lg 是否滿足這些條件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,試解關(guān)于x的方程f(x)=﹣ .
【答案】
(1)解:由 可得﹣1<x<1,即其定義域為(﹣1,1)
又 = =
又當x<0時,1﹣x>1+x>0,∴ ∴
故 滿足這些條件
(2)解:令x=y=0,∴f(0)=0,
令y=﹣x,有f(﹣x)+f(x)=f(0)=0,∴f(x)為奇函數(shù)
由條件得 ,解得
(3)解:設(shè)﹣1<x1<x2<1,則x1﹣x2<0,1﹣x1x2>0, ,
則 ,f(x1)﹣f(x2)>0,∴f(x)在(﹣1,1)上是減函數(shù)
∵
原方程即為 ,
∴
又∵
故原方程的解為
【解析】(1)先求定義域看其是否滿足條件,然后驗證函數(shù)是否滿足 ,最后求出當x<0時的值域,看是否滿足即可;(2)先判定函數(shù)的奇偶性,然后 建立f(a),f(b)的方程組,解之即可;(3)先判定函數(shù)f(x)在(﹣1,1)上的單調(diào)性,然后得到 ,建立關(guān)于x的方程,解之即可.
【考點精析】關(guān)于本題考查的函數(shù)的值,需要了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】定義:在平面內(nèi),點到曲線上的點的距離的最小值稱為點到曲線的距離,在平面直角坐標系中,已知圓: 及點,動點到圓的距離與到點的距離相等,記點的軌跡為曲線.
(1)求曲線的方程;
(2)過原點的直線(不與坐標軸重合)與曲線交于不同的兩點,點在曲線上,且,直線與軸交于點,設(shè)直線的斜率分別為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|< )的圖象如圖所示,為了得到g(x)=sin(2x+ )的圖象,則只需將f(x)的圖象( )
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校對甲、乙兩個班級進行了物理測驗,成績統(tǒng)計如下(每班50人):
(1)估計甲班的平均成績;
(2)成績不低于80分記為“優(yōu)秀”.請完成下面的列聯(lián)表,并判斷是否有85%的把握認為:“成績優(yōu)秀”與所在教學班級有關(guān)?
(3)從兩個班級,成績在的學生中任選2人,記事件為“選出的2人中恰有1人來自甲班”.求事件的概率.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓柱的上、下底面圓的直徑, 是邊長為2的正方形, 是底面圓周上不同于兩點的一點, .
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數(shù)為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com