如圖,在三棱錐P -ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn).BC ="2AC=8,AB" =

(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
(I) 通過證明AC⊥BC,進(jìn)而證明BC⊥平面PAC,從而得證;
(II)

試題分析:
(Ⅰ)證明:點(diǎn)在平面上的射影的中點(diǎn),
PD⊥平面ABC,PD平面PAC
平面PAC⊥平面ABC                                                ……2分
BC=2AC=8,AB=4
,故AC⊥BC                                     ……4分
又平面PAC平面ABC=AC,BC平面ABC
BC⊥平面PAC,又BC平面PBC
平面PBC⊥平面PAC                                              ……6分
(Ⅱ)如圖所示建立空間直角坐標(biāo)系,

則C(0,0,0),A(4,0,0),B(0,8,0),P(2,0,),
                                      ……8分
設(shè)平面PAB的法向量為


設(shè)平面PBC的法向量為
,

=0,=1,=-,                            ……10分

二面角的平面角的余弦值為                         ……12分
點(diǎn)評(píng):立體幾何問題,主要是考查學(xué)生的空間想象能力和邏輯推理能力,解決此類問題時(shí),要緊扣相應(yīng)的判定定理和性質(zhì)定理,要將定理中要求的條件一一列舉出來,缺一不可,用空間向量解決立體幾何問題時(shí),要仔細(xì)運(yùn)算,適當(dāng)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖正四棱錐的底面邊長為,高,點(diǎn)在高上,且,記過點(diǎn)的球的半徑為,則函數(shù)的大致圖像是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為4的正方形與正三角形所在的平面相互垂直,且、
分別為中點(diǎn).

(1)求證: ;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點(diǎn),PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點(diǎn)G,使EG∥平面PFD,當(dāng)PA=AB=4時(shí),求四面體E-GFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體中,,分別是棱,的中點(diǎn),則與平面所成的角的大小是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,、分別是、的中點(diǎn);

(1)證明:平面平面
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分)如圖1,在三棱錐PABC中,平面ABC,,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示。

(1)證明:平面PBC;
(2)求三棱錐DABC的體積;
(3)在的平分線上確定一點(diǎn)Q,使得平面ABD,并求此時(shí)PQ的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l與球O有且只有一個(gè)公共點(diǎn)P,從直線l出發(fā)的兩個(gè)半平面截球O的兩個(gè)截面圓的半徑分別為1和.若二面角的平面角為150°,則球O的表面積為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案