【題目】選修4—4:坐標系與參數(shù)方程

(Ⅰ)如圖,以過原點的直線的傾斜角θ為參數(shù),求圓x2y2x=0的參數(shù)方程;

(Ⅱ)在平面直角坐標系中,已知直線l的參數(shù)方程為 (s為參數(shù)),曲線C的參數(shù)方程為 (t為參數(shù)),若lC相交于A,B兩點,求AB的長.

【答案】(Ⅰ) 為參數(shù));(Ⅱ) .

【解析】試題分析:(Ⅰ)有圖像可知xPcos 2θ=cos2 θyPsin 2θ=sin θcos θ即得;

(Ⅱ)聯(lián)立解得交點,進而得線段長.

試題解析:

(Ⅰ)圓的半徑為,記圓心為C,連結CP,則∠PCx=2θ,故xPcos 2θ=cos2 θ

yPsin 2θ=sin θcos θ(θ為參數(shù)).

所以圓的參數(shù)方程為 (θ為參數(shù)).

(Ⅱ)直線l的普通方程為xy=2,曲線C的普通方程為y=(x-2)2(y≥0),

聯(lián)立兩方程得x2-3x+2=0,求得兩交點坐標為(1,1),(2,0),所以AB.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的離心率為,圓心在軸的正半軸上的圓與雙曲線的漸近線相切,且圓的半徑為2,則以圓的圓心為焦點的拋物線的標準方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的各項均為正數(shù),滿足:a1=b1=1,a5=b3 , 且S3=9.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求 + +…+ 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) =(2sinx,cosx+sinx), =(cosx,cosx﹣sinx),f(x)=
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若關于x的方程f(x)﹣m=0(m∈R)在區(qū)間(0, )內(nèi)有兩個不相等的實數(shù)根x1 , x2 , 記t=mcos(x1+x2),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,在培訓期間,他們參加的5次預賽成績記錄如下:

82

82

79

95

87

95

75

80

90

85


(1)請用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)現(xiàn)要從中選派一人參加9月份的全國數(shù)學聯(lián)賽,從統(tǒng)計學的角度考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓x2+y2=1 每一點的,橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得到曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線l:2x+y-2=0 與C的交點為P1,P2 ,以坐標原點為極點, x 軸的正半軸為極軸建立極坐標系,求線段 P1P2 的中點且與 l 垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面,,,為棱的中點.

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)當m=1時,求A∪B;
(2)若BRA,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案