3.如圖程序輸出結果為16

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算并輸出b的值,模擬程序的循環(huán)過程,并用表格對程序運行過程中的數(shù)據(jù)進行分析,不難得到正確的答案.

解答 解:程序在運行過程中各變量的值如下表示:
是否繼續(xù)循環(huán)   b   a
循環(huán)前/1   1
第一圈      是          2   2
第二圈      是          4   3
第三圈      是          16  4
第四圈      否
故最后輸出的b值為:16
故答案為:16.

點評 根據(jù)流程圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型③解模.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.(1)用輾轉相除法求840與1 764 的最大公約數(shù);
(2)把666(7)化為十進制,把342(10)化為八進制.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=$\sqrt{2}$,且D為BC中點.
(1)求證:A1C∥平面AB1D;
(2)設N為棱CC1的中點,且滿足AB⊥AC,求證:平面AB1D⊥平面ABN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如果一個數(shù)列的前5項分別是1,2,3,4,5,則下列說法正確的是( 。
A.該數(shù)列一定是等差數(shù)列B.該數(shù)列一定不是等差數(shù)列
C.該數(shù)列不一定是等差數(shù)列D.以上結論都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知集合M={f(x)|存在非零常數(shù)k,對定義域中的任意x,等式f(kx)=$\frac{k}{2}$+f(x)恒成立}.現(xiàn)有兩個函數(shù):f(x)=ax+b(a≠0),g(x)=log2x,則函數(shù)f(x)、g(x)分別與集合M的關系為f(x)∉M,g(x)∈M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.等差數(shù)列{an}中,a3=4,前11項和S11=110,則a9=( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面θ截一球面得圓P,過該圓心P且與平面θ成60°二面角的平面γ截該球面得圓Q.若該球的半徑為$\sqrt{7}$,圓P的面積為3π,則該圓Q的面積為6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若tanθ=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為( 。
A.0B.1C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=cos(π+x)cos($\frac{3}{2}$π-x)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(I)求f(x)的最小正周期和最大值;
(II) 求f(x)在[$\frac{π}{6}$,$\frac{2}{3}$π]上的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案