命題“若a>b,則a-1>b-1”的否命題是( 。
A、若a>b,則a-1≤b-1
B、若a>b,則a-1<b-1
C、若a≤b,則a-1≤b-1
D、若a<b,則a-1<b-1
考點:四種命題
專題:簡易邏輯
分析:根據(jù)命題“若p,則q”的否命題是“若¬p,則¬q”,直接寫出它的否命題.
解答: 解:命題“若a>b,則a-1>b-1”的否命題是
“若a≤b,則a-1≤b-1”.
故選:C.
點評:本題考查了命題與它的否命題之間的關(guān)系,解題時應熟悉四種命題之間的關(guān)系,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

中心為原點,焦點在x軸上,離心率為e=
2
2
,且與直線y=x+2
3
相切的橢圓的方程為( 。
A、
x2
32
+
y2
16
=1
B、
x2
6
+
y2
3
=1
C、
x2
8
+
y2
4
=1
D、
x2
12
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,數(shù)列{Sn+1}是公比為2的等比數(shù)列,a2是a1和a1=S1=4的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式(ax-a2-4)(x+1)<0的解集為A,且A中共含有n個整數(shù),則當n最小時,實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-4ax+c,(a<0),當f(m)≥f(0)時,實數(shù)m滿足的取值范圍是( 。
A、(-∞,0]∪[4,+∞)
B、[0,4]
C、(0,4)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-
1
2
},則不等式ax2-bx+c>0的解集是( 。
A、{x|-2<x<-
1
2
}
B、{x|
1
2
<x<2}
C、{x|x<
1
2
或x>2}
D、{x|-
1
2
<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)樣本數(shù)據(jù)x1,x2,…,xn的平均值為1,若yi=xi+a(a為非零常數(shù),i=1,2,…,n),則y1,y2,…,yn的平均值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(
1
2
)=0,且在(0,+∞)上單調(diào)遞減,則f(log4x)<0的解集為(  )
A、(-∞,
1
2
)∪(2,+∞)
B、(0,
1
2
)∪(2,+∞)
C、(
1
2
,2)
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+cos2x-m在[0,
π
2
]上有兩個零點,則實數(shù)m的取值范圍是( 。
A、(-1,2)
B、[1,2)
C、(-1,2]
D、[1,2]

查看答案和解析>>

同步練習冊答案