10.設(shè)集合M={y|y=2x},N={y|y=x2+1},則M∩N=(  )
A.MB.NC.D.有限集

分析 化簡(jiǎn)集合M、N,再計(jì)算M∩N.

解答 解:集合M={y|y=2x}={y|y>0},
N={y|y=x2+1}={y|y≥1},
∴M∩N={y|y≥1}=N.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若點(diǎn)P是兩條異面直線a,b外一點(diǎn),則過(guò)P且與a,b都平行的平面?zhèn)數(shù)是(  )個(gè).
A.0個(gè)B.1個(gè)C.0或1個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于兩隨機(jī)事件A,B若P(A∪B)=P(A)+P(B)=1,則事件A,B的關(guān)系是( 。
A.互斥且對(duì)立B.互斥不對(duì)立
C.既不互斥也不對(duì)立D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.分別求滿足下列條件的直線l方程.
(1)將直線l1:y=$\frac{\sqrt{3}}{3}$x+1繞(0,1)點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{6}$得到直線l;
(2)直線l過(guò)直線l1:x+3y-1=0與l2:2x-y+5=0的交點(diǎn),且點(diǎn)A(2,1)到l的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過(guò)拋物線y2=x的焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),且直線l的傾斜角$θ≥\frac{π}{4}$,點(diǎn)A在x軸的上方,則|FA|的取值范圍是($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)集合A={4,5,7,9},B={3,4,5,7,8,9},則集合∁BA中的元素的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-kt}\\{y=t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)寫出直線l和曲線C的普通方程:
(2)若直線l和曲線C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)y=2-x+m的圖象不經(jīng)過(guò)第一象限,則m的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{1,x為有理數(shù)}\\{π,x為無(wú)理數(shù)}\end{array}\right.$,下列結(jié)論不正確的( 。
A.此函數(shù)為偶函數(shù)B.此函數(shù)的定義域是R
C.此函數(shù)既有最大值也有最小值D.方程f(x)=-x無(wú)解

查看答案和解析>>

同步練習(xí)冊(cè)答案