(2013•寶山區(qū)一模)已知函數(shù)f(x)=log2(4x+b•2x+4),g(x)=x.
(1)當(dāng)b=-5時(shí),求f(x)的定義域;
(2)若f(x)>g(x)恒成立,求b的取值范圍.
分析:(1)由函數(shù)f(x)=log2(4x+b•2x+4),b=-5,知4x-5•2x+4>0,由此能求出f(x)的定義域.
(2)f(x)=log2(4x+b•2x+4),g(x)=x,由f(x)>g(x),得4x+b•2x+4>2x,由此能求出結(jié)果.
解答:解:(1)∵函數(shù)f(x)=log2(4x+b•2x+4),b=-5,
∴4x-5•2x+4>0,…3分
解得x<0,或x>2.
∴f(x)的定義域?yàn)椋?∞,0)∪(2,+∞).…6分
(2)∵f(x)=log2(4x+b•2x+4),g(x)=x,
∴由f(x)>g(x),得4x+b•2x+4>2x,
b>1-(2x+
4
2x
)
…9分
h(x)=1-(2x+
4
2x
)
,
則h(x)≤-3,…12分
∴當(dāng)b>-3時(shí),f(x)>g(x)恒成立.
故b的取值范圍是(-3,+∞).…14分.
點(diǎn)評:本題考查函數(shù)的定義域的求法,解題時(shí)要認(rèn)真審題,注意對數(shù)函數(shù)的性質(zhì)和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)被f(x)的圖象截得的弦長為4
17
,數(shù)列{an}滿足,(an+1-an)g(an)+f(an)=0(n∈N*).
(1)函數(shù)f(x);
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=3f(an)-g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知f(x)=
x+1 ,x∈[-1,0)
x2+1   ,x∈[0,1]
,則下列四圖中所作函數(shù)的圖象錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)函數(shù)f(x)=x|arcsinx+a|+barccosx是奇函數(shù)的充要條件是 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若p=2,求線段AF中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為
n
=(1,2)
,當(dāng)焦點(diǎn)為F(
1
2
,0)
時(shí),求△OAB的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線MA、MF、MB的斜率成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案