【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

【答案】
(1)解:∵曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0,

∴ρ2sin2α=2ρcosα,

∴曲線C的直角坐標(biāo)方程為y2=2x.


(2)解:直線l的參數(shù)方程 ,(t為參數(shù),0<θ<π),

把直線的參數(shù)方程化入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,

設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,

,t1t2=﹣

|AB|=|t1﹣t2|=

= = ,

∴當(dāng) 時(shí),|AB|取最小值2.


【解析】(1)曲線C的極坐標(biāo)方程轉(zhuǎn)化為ρ2sin2α=2ρcosα,由此能求出曲線C的直角坐標(biāo)方程.(2)把直線的參數(shù)方程化入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則|AB|=|t1﹣t2|= ,由此能求出當(dāng) 時(shí),|AB|取最小值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c均為正數(shù),且a+2b+3c=9.求證: + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2acosθ(a>0),且曲線C與直線l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)設(shè)A、B為曲線C上的兩點(diǎn),且∠AOB= ,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|3x﹣2|+|x﹣2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)對(duì)任意的非零實(shí)數(shù)x,有f(x)≥(m2﹣m+2)|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)當(dāng)a=2, 時(shí),求b、c的值;
(2)若角A為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若對(duì)任意的x1 , x2∈[1,2],且x1≠x2時(shí),[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,則實(shí)數(shù)a的取值范圍為(
A.[﹣ ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣e2 , e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ2=4ρcosθ+6ρsinθ﹣12,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)).
(I)寫(xiě)出直線l的一般方程與曲線C的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線C向左平移2個(gè)單位長(zhǎng)度,向上平移3個(gè)單位長(zhǎng)度,得到曲線D,設(shè)曲線D經(jīng)過(guò)伸縮變換 得到曲線E,設(shè)曲線E上任一點(diǎn)為M(x,y),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F,過(guò)橢圓C中心的弦PQ長(zhǎng)為2,且∠PFQ=90°,△PQF的面積為1.
(1)求橢圓C的方程;
(2)設(shè)A1、A2分別為橢圓C的左、右頂點(diǎn),S為直線 上一動(dòng)點(diǎn),直線A1S交橢圓C于點(diǎn)M,直線A2S交橢圓于點(diǎn)N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案