設(shè)全集U=R,集合A={x|6-x-x2>0},集合
(Ⅰ)求集合A與B;   
(Ⅱ)求A∩B、(CA)∪B.
【答案】分析:(Ⅰ)由6-x-x2>0,知A={x|-3<x<2},由,知B={x|x<-3或x>4}.
(Ⅱ)由A={x|-3<x<2},B={x|x<-3或x>4},能求出A∩B,由CUA={x|x≤-3或x≥2},能求出(CUA)∪B.
解答:解:(Ⅰ)∵6-x-x2>0,
∴x2+x-6<0,
不等式的解為-3<x<2,
∴A={x|-3<x<2},
,

∴x<-3或x>4,∴B={x|x<-3或x>4}
(Ⅱ)由(Ⅰ)可知A={x|-3<x<2},
B={x|x<-3或x>4},
∴A∩B=∅,
∵CUA={x|x≤-3或x≥2},
∴(CUA)∪B={x|x≤-3或x≥2}.
點評:本題考查交、并、補(bǔ)集的混合運用,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求?U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x2-2x<0},B={x|x>1},則集A∩?UB=
{x|0<x≤1}
{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|x≥0},B={x|x2-2x-3<0},則(?UA)∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)設(shè)全集U=R,集合A={x|x2-x-30<0},B={x|cos
πx
3
=
1
2
},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|-2<x≤3},B={x|0≤x<5}
(1)分別求A∪B,A∩(?UB);
(2)設(shè)C={x|x∈A∪B且x∉A∩B},求集合C.

查看答案和解析>>

同步練習(xí)冊答案