2.下列命題中正確的是(  )
A.過三點確定一個平面B.四邊形是平面圖形
C.三條直線兩兩相交則確定一個平面D.兩個相交平面把空間分成四個區(qū)域

分析 根據(jù)平面的基本性質與推論,對題目中的命題進行分析,判斷正誤即可.

解答 解:對于A,過不在同一條直線上的三點有且只有一個平面,故A錯誤;
對于B,四邊形也可能是空間四邊形,不一定是平面圖形,故B錯誤;
對于C,三條直線兩兩相交,可以確定一個平面或三個平面,故C錯誤;
對于D,平面是無限延展的,兩個相交平面把空間分成四個區(qū)域,故D正確.
故選:D.

點評 本題考查了平面基本性質與推論的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.命題“?x0∈R,x02+2x0-3>0”的否定形式為?x∈R,x2+2x-3≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$,則z=3|x|+y的最小值為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.△ABC的三邊長分別是a,b,c,且a=1,B=45°,S△ABC=2,則△ABC的外接圓的面積為( 。
A.25πB.C.$\frac{25π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設x,y滿足約束條件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的取值范圍為( 。
A.(-3,3)B.[-3,3]C.[-3,3)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.2016年10月3日,諾貝爾生理學或醫(yī)學獎揭曉,獲獎者是日本生物學家大隅良典,他的獲獎理由是“發(fā)
現(xiàn)了細胞自噬機制”.在上世紀90年代初期,他篩選了上千種不同的酵母細胞,找到了15種和自噬有關
的基因,他的研究令全世界的科研人員豁然開朗,在此之前,每年與自噬相關的論文非常少,之后呈現(xiàn)
了爆發(fā)式增長,下圖是1994年到2016年所有關于細胞自噬具有國際影響力的540篇論文分布如下:

(Ⅰ)從這540篇論文中隨機抽取一篇來研究,那么抽到2016年發(fā)表論文的概率是多少?
(Ⅱ)如果每年發(fā)表該領域有國際影響力的論文超過50篇,我們稱這一年是該領域的論文“豐年”.若從1994年到2016年中隨機抽取連續(xù)的兩年來研究,那么連續(xù)的兩年中至少有一年是“豐年”的概率是多少?
(Ⅲ)由圖判斷,從哪年開始連續(xù)三年論文數(shù)量方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)$f(x)=ln(x+1)-\frac{ax}{x+1}(a∈R)$.
(Ⅰ)若f(0)為f(x)的極小值,求a的值;
(Ⅱ)若f(x)>0對x∈(0,+∞)恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x)的圖象,若對于滿足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{4}$,則f($\frac{π}{4}$)的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在正三棱錐V-ABC內,有一個半球,其底面與正三棱錐的底面重合,且與正三棱錐的三個側面都相切,若半球的半徑為2,則正三棱錐的體積的最小時,其底面邊長為$6\sqrt{2}$.

查看答案和解析>>

同步練習冊答案