【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若的圖像與軸圍成直角三角形,的值.

【答案】12

【解析】

1)分3段去絕對(duì)值解不等式組,再求并;

2)將yfx)去絕對(duì)值寫(xiě)出分段函數(shù),根據(jù)其圖象與x軸圍成直角三角形,轉(zhuǎn)化為(a1)(a+1)=﹣1或(a+1)(1a)=﹣1,可解得.

1)當(dāng)a2時(shí),不等式fx)>1,即|x+1||2x3|1,

當(dāng)x1時(shí),原不等式可化為﹣x1+2x31,解得x5,因?yàn)?/span>x1,所以此時(shí)原不等式無(wú)解;

當(dāng)﹣1時(shí),原不等式可化為x+1+2x31,解得x1,所以1x;

當(dāng)x時(shí),原不等式可化為x+12x+31,解得x3,所以x3

綜上,原不等式的解集為{x|1x3}

2)因?yàn)?/span>,所以,所以,

因?yàn)?/span>,所以,

當(dāng)時(shí),要使得的圖象與軸圍成直角三角形,

,解得,舍去;

當(dāng)時(shí),的圖象與軸不能?chē)扇切,不符合題意,舍去;

當(dāng)時(shí),要使得的圖象與軸圍成直角三角形,

,解得,因?yàn)?/span>,所以.

綜上,所求的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,的中點(diǎn).

1)證明:;

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有長(zhǎng)分別為、的鋼管各3根(每根鋼管的質(zhì)地均勻、粗細(xì)相同且富有不同的編號(hào)),從中隨機(jī)抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.

(I)當(dāng)時(shí),記事件,求;

(II)當(dāng)時(shí),若用表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊交單位圓于點(diǎn),,的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

1)若是曲線的切線,的值;

2)若,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?

附:對(duì)于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;

(2)若直線軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動(dòng)點(diǎn),求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201611日,我國(guó)全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持響應(yīng)”“猶豫不響應(yīng)態(tài)度的人數(shù)如表所示:

響應(yīng)

猶豫

不響應(yīng)

男性青年

500

300

200

女性青年

300

200

300

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有97.5%的把握認(rèn)為猶豫與否與性別有關(guān);

猶豫

不猶豫

總計(jì)

男性青年

   

   

   

女性青年

   

   

   

總計(jì)

   

   

1800

2)以表中頻率作為概率,若從街頭隨機(jī)采訪青年男女各2人,求4人中響應(yīng)的人數(shù)恰好是不響應(yīng)的人數(shù)(不響應(yīng)的人數(shù)不為0)的2倍的概率.

參考公式:

參考數(shù)據(jù):

PK2k0

0.150

0.100

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCDAB=2,BC=1,EPB中點(diǎn).利用空間向量方法完成以下問(wèn)題:

1)求二面角E-AC-D的余弦值;

2)在棱PD上是否存在點(diǎn)M,使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案