(本小題滿分12分)
如圖橢圓的右頂點是,上下兩個頂點分別為,四邊形是矩形(為原點),點分別為線段的中點.

(Ⅰ)證明:直線與直線的交點在橢圓上;
(Ⅱ)若過點的直線交橢圓于兩點,關于軸的對稱點(不共線),
問:直線是否經(jīng)過軸上一定點,如果是,求這個定點的坐標,如果不是,說明理由.
(Ⅰ)見解析;
(Ⅱ)直線經(jīng)過軸上的點
(1)易求A、B、D、E、M的坐標,然后求出DE、BM的方程,兩直線方程聯(lián)立解方程組可求出其交點.再驗證交點坐標滿足橢圓方程,從而證明交點在橢圓上.
(2)先設出RS的方程,與橢圓方程聯(lián)立,消y后得關于x的一元二次方程,設出交點R、S的坐標,表示出SK的方程,令y=0得到它與x軸的交點的模坐標,然后再借助直線RS的方程和韋達定理,證明x的值是常數(shù)即可.
解:(1)由題意,得
所以直線的方程,直線的方程為,------2分
,得
所以直線與直線的交點坐標為,---------------4分
因為,所以點在橢圓上.---------6分
(2)設的方程為,代入
,
,則,
,
直線的方程為,
,
,代入上式得,設,
所以直線經(jīng)過軸上的點.---------12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分
已知橢圓的離心率為,以原點為圓心,
橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設,、是橢圓上關于軸對稱的任意兩個不同的點,連結交橢圓
于另一點,求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B、C是橢圓上的三點,其中點A的坐標為,BC過橢圓m的中心,且

(1)求橢圓的方程;
(2)過點的直線l(斜率存在時)與橢圓m交于兩點P,Q,
設D為橢圓m與y軸負半軸的交點,且,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左頂點為A1,右焦點為F2,點P為該橢圓上一動點,則當取最小值時,的值為(  )
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分) 已知F1、F2是橢圓的左、右焦點,A是橢圓上位于第一象限內的一點,點B也在橢圓上,且滿足是坐標原點),,若橢圓的離心率等于.   
(Ⅰ)求直線AB的方程;
(Ⅱ)若三角形ABF2的面積等于4,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,橢圓上是否存在點M,使得三角形MAB的面積等于8.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓的方程為,過右焦點且不與軸垂直的直線與橢圓交于兩點,若在橢圓的右準線上存在點,使為正三角形,則橢圓的離心率的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓上一點作圓的兩條切線,點為切點.過的直線軸, 軸分別交于點兩點, 則的面積的最小值為(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為橢圓的兩個焦點,以為圓心作圓,已知圓經(jīng)過橢圓的中心,且與橢圓相交于點,若直線恰與圓相切,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案