已知f(k)=k+(k+1)+(k+2)+…+2k(k∈N*),則f(k+1)-f(k)=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:寫出f(k+1)-f(k)的表達式求解即可.
解答: 解:f(k)=k+(k+1)+(k+2)+…+2k(k∈N*),
則f(k+1)-f(k)=(k+1)+(k+2)+(k+3)+…+(2k-1)+(2k)+(2k+1)+2(k+1)-[k+(k+1)+(k+2)+…+2k]
=3(k+1)
故答案為:3(k+1)
點評:正確弄清由k到k+1時增加和減少的項是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:2x2-9x+a<0,命題q:
x2-4x+3<0
x2-6x+8<0
,且非q是非p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-x2+3lnx,求證:當(dāng)x>0時f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,公差d=2,且b1+b2+b3=15.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-2lnx的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E,F(xiàn)分別是棱AA′,CC′的中點,過直線E,F(xiàn)的平面分別與棱BB′、DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下五個命題:
①當(dāng)且僅當(dāng)x=0時,四邊形MENF的周長最大;
②當(dāng)且僅當(dāng)x=
1
2
時,四邊形MENF的面積最。
③多面體ABCD-MENF的體積為
1
2

④四棱錐C′-MENF的體積V=V(x)為常函數(shù);
⑤直線MN與直線CC′的夾角正弦值的范圍是[
6
3
,1]
以上命題中正確的有
 
(天上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公共汽車上有4位乘客,汽車沿途?6個站,那么這4位乘客不同的下車方式共有
 
種;如果其中任何兩人都不在同一站下車,那么這4位乘客不同的下車方式共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在x=x0處可導(dǎo),則f′(x0)=0是函數(shù)f(x)在點x0處取極值的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
AB
,
AC
在正方形網(wǎng)格中的位置如圖所示,設(shè)向量
a
=
AC
AB
,若
a
AB
,則實數(shù)λ=
 

查看答案和解析>>

同步練習(xí)冊答案