15.已知函數(shù)f(x)=$\frac{lnx+1}{e^x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最值;
(2)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x>0,g(x)<1+e2

分析 (1)先求出函數(shù)f(x)的導(dǎo)數(shù),x∈(0,+∞),利用導(dǎo)數(shù)解出函數(shù)的單調(diào)區(qū)間即可;
(2)先給出g(x)=xf'(x),考查解析式發(fā)現(xiàn)當(dāng)x≥1時(shí),g(x)=xf′(x)≤0<1+e-2一定成立,由此將問題轉(zhuǎn)化為證明g(x)<1+e-2在0<x<1時(shí)成立,利用導(dǎo)數(shù)求出函數(shù)在(0,1)上的最值,與1+e-2比較即可得出要證的結(jié)論.

解答 解:(1)由f(x)=$\frac{lnx+1}{{e}^{x}}$知,f′(x)=$\frac{1-xlnx-x}{{xe}^{x}}$,x∈(0,+∞),
設(shè)h(x)=1-xlnx-x,x∈(0,+∞),h′(x)=-(lnx+2),
當(dāng)x∈(0,e-2)時(shí),h′(x)>0,當(dāng)x∈( e-2,1)時(shí),h′(x)<0,
可得h(x)在x∈(0,e-2)時(shí)是增函數(shù),在x∈( e-2,1)時(shí)是減函數(shù),在(1,+∞)上是減函數(shù),
又h(1)=0,h(e-2)>0,又x趨向于0時(shí),h(x)的函數(shù)值趨向于1,
∴當(dāng)0<x<1時(shí),h(x)>0,從而f′(x)>0,
當(dāng)x>1時(shí)h(x)<0,從而f′(x)<0,
綜上可知,f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞),
∴f(x)max=f(1)=$\frac{1}{e}$,沒有最小值;
(2)由(1)可知,當(dāng)x≥1時(shí),g(x)=xf′(x)≤0<1+e-2,
故只需證明g(x)<1+e-2在0<x<1時(shí)成立.
當(dāng)0<x<1時(shí),ex>1,且g(x)>0,∴g(x)=$\frac{1-xlnx-x}{{e}^{x}}$<1-xlnx-x,
設(shè)F(x)=1-xlnx-x,x∈(0,1),則F′(x)=-(lnx+2),
當(dāng)x∈(0,e-2)時(shí),F(xiàn)′(x)>0,當(dāng)x∈( e-2,1)時(shí),F(xiàn)′(x)<0,
所以當(dāng)x=e-2時(shí),F(xiàn)(x)取得最大值F(e-2)=1+e-2
所以g(x)<F(x)≤1+e-2
綜上,對(duì)任意x>0,g(x)<1+e-2<1+e2

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的最值及曲線上某點(diǎn)處的切線方程,解題的關(guān)鍵是靈活利用導(dǎo)數(shù)工具進(jìn)行運(yùn)算及理解導(dǎo)數(shù)與要解決問題的聯(lián)系,此類題運(yùn)算量大,易出錯(cuò),且考查了轉(zhuǎn)化的思想,判斷推理的能力,綜合性強(qiáng),是高考?碱}型,學(xué)習(xí)時(shí)要嚴(yán)謹(jǐn)認(rèn)真,注意總結(jié)其解題規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若${({2m+1})^{\frac{1}{2}}}>{({{m^2}+m-1})^{\frac{1}{2}}}$,則實(shí)數(shù)m的取值范圍是( 。
A.$[{\frac{{\sqrt{5}-1}}{2},2})$B.$[{\frac{{\sqrt{5}-1}}{2},+∞})$C.(-1,2)D.$({-∞,\frac{{-\sqrt{5}-1}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,
(1)求證:a:b:c=sinA:sinB:sinC
(2)若a:b:c=3:5:7,求sinA+sinB+sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一個(gè)正四面體木塊的四個(gè)面上分別寫有數(shù)字1,2,3,4,將三個(gè)這樣的四面體木塊拋于桌面上,記與桌面貼合的一面上的數(shù)字分別為x,y,z.
(1)求x+y+z=6的概率;
(2)求xyz能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若動(dòng)點(diǎn)A,B分別在直線l1:x+2y-1=0和l2:2x+4y+5=0上移動(dòng),則|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O為原點(diǎn))的最小值是( 。
A.$\frac{3\sqrt{5}}{10}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{20}$D.$\frac{7\sqrt{5}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.正實(shí)數(shù)x,y滿足xy+x+2y=6,則xy的最大值為2,x+y的最小值為$4\sqrt{2}-3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足a1=1,a2=a>0,數(shù)列{bn}滿足bn=an•an+1
(1)若{an}為等比數(shù)列,求{bn}的前n項(xiàng)的和sn;
(2)若${b_n}={3^n}$,求數(shù)列{an}的通項(xiàng)公式;
(3)若bn=n+2,求證:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}>2\sqrt{n+2}-3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=ax2+bx+2,x∈R
(1)若b=1,且3∉{y|y=f(x),x∈R},求a的取值范圍
(2)若a=1,且方程f(x)+|x2-1|=2在(0,2)上有兩個(gè)解x1,x2,求b的取值范圍,并證明2$<\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}<4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知過(guò)拋物線C:x2=2py(p>0)的焦點(diǎn)F的直線m交拋物線于點(diǎn)M、N,|MF|=2|NF|=3,則拋物線C的方程為( 。
A.x2=8yB.x2=2yC.x2=4yD.x2=2$\sqrt{2}$y

查看答案和解析>>

同步練習(xí)冊(cè)答案