知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值
(Ⅰ);(Ⅱ)(1),(2)定值為
【解析】
試題分析:(1) 橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形,可以看作是以長(zhǎng)為底邊,高為的等腰三角形,故面積為,從而可以列出等式,又由離心率得及,可解出,從而求出橢圓的方程 (2)直線和橢圓相交,其方程聯(lián)立方程組,消去,可得關(guān)于的二次方程,利用韋達(dá)定理可得,這就是相交弦的中點(diǎn)的橫坐標(biāo),從而求出,把用坐標(biāo)表示出來(lái),借助(1)中的二次方程得出的代入,就可證明出定值
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014042504175117674903/SYS201404250418441298501484_DA.files/image017.png">滿足,, 2分
,解得,,
則橢圓方程為 4分
(Ⅱ)(1)設(shè),將代入并化簡(jiǎn)得
6分
,
則是上述方程的解
, 7分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014042504175117674903/SYS201404250418441298501484_DA.files/image027.png">的中點(diǎn)的橫坐標(biāo)為,所以,解得 9分
(2)由(1),,
,為定值
考點(diǎn):(Ⅰ)橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì);(Ⅱ)直線與橢圓的位置關(guān)系問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
y2 |
2 |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
| ||
2 |
x0 |
a |
y0 |
b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的
左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢
圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)
分別 為和
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,點(diǎn)在橢
圓的右準(zhǔn)線上,若,則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三下學(xué)期2月月考文科數(shù)學(xué) 題型:選擇題
已知是橢圓上的點(diǎn),以為圓心的圓與軸相切于橢
圓的焦點(diǎn),圓與軸相交于兩點(diǎn).若為銳角三角形,則橢圓的離心率
的取值范圍為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com