【題目】如果奇函數(shù)f(x)在區(qū)間[1,5]上是減函數(shù),且最小值3,那么f(x)在區(qū)間[﹣5,﹣1]上是( )
A.增函數(shù)且最小值為3
B.增函數(shù)最大值為3
C.減函數(shù)且最小值為﹣3
D.減函數(shù)且最大值為﹣3

【答案】D
【解析】解:由奇函數(shù)的性質(zhì)可知,若奇函數(shù)f(x)在區(qū)間[1,5]上是減函數(shù),且最小值3,

則那么f(x)在區(qū)間[﹣5,﹣1]上為減函數(shù),且有最大值為﹣3,

故答案為:D

根據(jù):如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形,即可解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:若a>|b|,則a2>b2;命題q:若x2=4,則x=2.下列說(shuō)法正確的是(
A.“p∨q”為真命題
B.“p∧q”為真命題
C.“¬p”為真命題
D.“¬q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿(mǎn)足f(2x﹣1)<f(3)的x取值集合是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調(diào)遞減,則滿(mǎn)足f(2x+1)<f(3)的x的取值范圍是( )
A.(﹣1,2)
B.(﹣2,1)
C.(﹣1,1)
D.(﹣2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人有3個(gè)電子郵箱,他要發(fā)5封不同的電子郵件,則不同的發(fā)送方法有(
A.8種
B.15種
C.35
D.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位同學(xué)被問(wèn)到是否去過(guò)A,B,C三個(gè)城市時(shí), 甲說(shuō):我去過(guò)的城市比乙多,但沒(méi)去過(guò)B城市;
乙說(shuō):我沒(méi)去過(guò)C城市;
丙說(shuō):我們?nèi)巳ミ^(guò)同一城市;
由此可判斷乙去過(guò)的城市為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|3≤x<6},B={x|2<x<9},R是實(shí)數(shù)集.分別求R(A∩B),(RB)∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明天使基金收到甲乙丙三兄弟24萬(wàn)、25萬(wàn)、26萬(wàn)三筆捐款(一人捐一筆款),記者采訪這三兄弟時(shí),甲說(shuō):乙捐的不是最少.”乙說(shuō):甲捐的比丙多.”丙說(shuō):若我捐的最少,則甲捐的不是最多.”根據(jù)這三兄弟的回答,確定乙捐了_________萬(wàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)兩個(gè)變量x,y進(jìn)行線性回歸分析時(shí)有下列步驟:

對(duì)所求出的回歸方程作出解釋.

收集數(shù)據(jù).

求線性回歸方程.

求相關(guān)系數(shù).

根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.

如果根據(jù)可靠性要求能夠作出變量x,y具有線性相關(guān)的結(jié)論,則在下列操作順序中正確的是(  )

A. ①②⑤③④ B. ③②④⑤①

C. ②④③①⑤ D. ②⑤④③①

查看答案和解析>>

同步練習(xí)冊(cè)答案