10.如圖,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F(xiàn)分別在棱BB1,CC1上,且C1F=$\frac{1}{3}$C1C,BE=$\frac{1}{3}$BB1
(Ⅰ)證明:AC⊥平面A1ABB1
(Ⅱ)求直線AA1與平面AEF所成角的正弦值.

分析 (Ⅰ)證明:直三棱柱ABC-A1B1C1中,A1A⊥面ABC,又AC?面ABC,∴A1A⊥AC,從而證得命題
(Ⅱ)在△AEF中,AE=$\sqrt{2}$,EF=$\sqrt{3}$,AF=$\sqrt{5}$則AE2+EF2=AF2,得到垂直關(guān)系,找到高,繼而求得正弦值.

解答 解:(Ⅰ)證明:直三棱柱ABC-A1B1C1中,A1A⊥面ABC,又AC?面ABC,∴A1A⊥AC
且A1A∩AB=A,又A1A,AB?面A1AB∴AC⊥面A1ABB1
(Ⅱ)在△AEF中,AE=$\sqrt{2}$,EF=$\sqrt{3}$,AF=$\sqrt{5}$則AE2+EF2=AF2
因此∠AEF=90°,∴${S}_{△AEF}=\frac{\sqrt{6}}{2}$又可證BA⊥面A1ACC1,
∴B與面A1AF之間的距離為1,
又可證BE∥面A1AF,
∴E與面A1AF之間的距離為1,
∴${V}_{E-{A}_{1}AF}=\frac{1}{3}×\frac{1}{2}×3×1=\frac{1}{2}$
設(shè)A1與面AEF之間的距離為h,則$\frac{1}{3}×\frac{\sqrt{6}}{2}×h=\frac{1}{2}$
得h=$\frac{\sqrt{6}}{2}$,
∴AA1與面AEF所成的角的正弦值為$\frac{h}{A{A}_{1}}=\frac{\sqrt{6}}{6}$

點評 本題主要考查立體幾何中的線面關(guān)系的證明和線面角的求解,屬中檔題型,高考?碱}型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.曲線f(x)=x2在曲線上某點的切線的傾斜角為$\frac{3π}{4}$,則此點的坐標是(-$\frac{1}{2}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)1+2i=2i(a+bi)(其中i為虛數(shù)單位,a,b∈R),則a+b的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某電視臺推出一檔游戲類綜藝節(jié)目,選手面對1-5號五扇大門,依次按響門上的門鈴,門鈴會播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應(yīng)的家庭夢想基金,回答每一扇門后,選手可自由選擇帶著目前的獎金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢想基金,但是一旦回答錯誤,游戲結(jié)束并將之前獲得的所有夢想基金清零;整個游戲過程中,選手有一次求助機會,選手可以詢問親友團成員以獲得正確答案.
1-5號門對應(yīng)的家庭夢想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi=$\frac{6-i}{7-i}$(i=1,2,…,5),親友團正確回答每一扇門的歌曲名字的概率均為$\frac{1}{5}$,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為$\frac{1}{2}$;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率;
(2)若選手在整個游戲過程中不使用求助,且獲得的家庭夢想基金數(shù)額為X(元),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若cosα=$\frac{1}{3}$,則sin$({\frac{π}{2}+2α})$-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(2sinx,-cosx),$\overrightarrow$=($\sqrt{3}$cosx,2cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$+1
(I)求函數(shù)f(x)的最小正周期,并求當$x∈[{\frac{π}{12},\frac{2π}{3}}]$時f(x)的取值范圍;
(Ⅱ)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)g(x)的圖象.在△ABC中,角A,B,C的對邊分別為a,b,c,若g$({\frac{A}{2}})$=1,a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知雙曲線$\frac{y^2}{m}-{x^2}$=1(m>0)的一個焦點與拋物線y=$\frac{1}{8}{x^2}$的焦點重合,則此雙曲線的離心率為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=|x-$\frac{1}{a}$|+|x+a|≥m.則m的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)$f(x)=2sin({ωx-\frac{π}{6}})+1({x∈R})$的圖象的一條對稱軸為x=π,其中ω為常數(shù),且ω∈(1,2),則函數(shù)f(x)的最小正周期為( 。
A.$\frac{3π}{5}$B.$\frac{6π}{5}$C.$\frac{9π}{5}$D.$\frac{12π}{5}$

查看答案和解析>>

同步練習冊答案