當(dāng)0<x<1時(shí),f(x)=
sinx
x
,則下列大小關(guān)系正確的是( 。
A、f2(x)<f(x)<f(x2
B、f(x2)<f2(x)<f(x)
C、f(x)<f(x2)<f2(x)
D、f2(x)<f(x2)<f(x)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)不等式的性質(zhì),以及函數(shù)單調(diào)性和導(dǎo)致之間的關(guān)系判斷函數(shù)f(x)的單調(diào)性即可得到結(jié)論.
解答: 解:根據(jù)三角函數(shù)線的定義知|sinx|≤|x|,∴
|sinx|
|x|
≤1,
∵0<x<1,∴0<
sinx
x
<1成立,即0<f(x)<1,則f2(x)<f(x),
∵f(x)=
sinx
x
,∴f′(x)=
xcosx-sinx
x2
,
設(shè)g(x)=xcosx-sinx,則g′(x)=-xsinx<0,(0<x<1),
∴g(x)在0<x<1上單調(diào)遞減,
則g(x)<g(0)=0,
∴f′(x)=
xcosx-sinx
x2
<0,即在0<x<1上f(x)單調(diào)遞減,
∵此時(shí)x>x2,
∴f2(x)<f(x)<f(x2),
故選:A.
點(diǎn)評:本題主要考查函數(shù)的值的大小比較,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圖象連續(xù)不斷的曲線函數(shù)y=f(x)在區(qū)間(a,b)(b-a=1)上有唯一零點(diǎn),如果用二分法求這個(gè)零點(diǎn)(精確到0.001)的近似值,那么將區(qū)間(a,b)等分的次數(shù)至少是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+1),將y=f(x)的圖象向左平移1個(gè)單位,再將圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)F(x)=f(x)-g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
,
b
滿足|2
a
-
b
|≤3,則
a
b
的范圍是( 。
A、[-
9
8
,+∞)
B、[-
9
4
,+∞)
C、[-
9
8
,
9
4
]
D、(-
9
8
,
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+2)=f(x-2),y=f(x-2)關(guān)于y軸對稱,當(dāng)x∈(0,2)時(shí),f(x)=log2x2,則下列結(jié)論中正確的是( 。
A、f(4.5)<f(7)<f(6.5)
B、f(7)<f(4.5)<f(6.5)
C、f(7)<f(6.5)<f(4.5)
D、f(4.5)<f(6.5)<f(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中假命題是(  )
A、樣本方差反映了樣本數(shù)據(jù)與樣本平均值的偏離程度
B、從勻速傳遞的新產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件新產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣
C、在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好
D、設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(-1<x<0)=
1
2
-p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex-
1
x
的零點(diǎn)所在的區(qū)間是( 。
A、(0,
1
2
 )
B、( 
1
2
,1)
C、(1,
3
2
 )
D、( 
3
2
,2 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線m,n均不在平面α,β內(nèi),給出下列命題:
①若m∥n,n∥α,則m∥α;
②若m∥β,α∥β,則m∥α;
③若m⊥n,n⊥α,則m∥α;
④若m⊥β,α⊥β,則m∥α;
則其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax+b)-x2+4x,曲線y=f(x)在點(diǎn)(0,f(0))處切線方程為y=2x-3.
(Ⅰ)求a,b的值;
(Ⅱ)討論f(x)的單調(diào)性,并求f(x)的極小值.

查看答案和解析>>

同步練習(xí)冊答案