以坐標(biāo)原點(diǎn)為頂點(diǎn),以雙曲線(xiàn)x2-y2=1的右焦點(diǎn)為焦點(diǎn)的拋物線(xiàn)方程是________.

答案:
解析:

  y2=4 x

  y2=4x

  雙曲線(xiàn)的右焦點(diǎn)(,0),故拋物線(xiàn)方程為y2=4x.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2分別是橢圓
x2
4
+
y2
3
=1
的左、右焦點(diǎn),曲線(xiàn)C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線(xiàn),自點(diǎn)F1引直線(xiàn)交曲線(xiàn)C于P、Q兩個(gè)不同的點(diǎn),點(diǎn)P關(guān)于x軸對(duì)稱(chēng)的點(diǎn)記為M,設(shè)
F1P
F1Q

(1)寫(xiě)出曲線(xiàn)C的方程;
(2)若
F2M
=u
F2Q
,試用λ表示u;
(3)若λ∈[2,3],求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線(xiàn)C以坐標(biāo)原點(diǎn)為頂點(diǎn),以雙曲線(xiàn)
y2
16
-
x2
9
=1
的頂點(diǎn)為焦點(diǎn)且過(guò)第二象限,則拋物線(xiàn)C的準(zhǔn)線(xiàn)方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
4
+
y2
3
=1
的左,右焦點(diǎn),A為橢圓的上頂點(diǎn).曲線(xiàn)C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線(xiàn),過(guò)點(diǎn)F1的直線(xiàn)l交曲線(xiàn)C于x軸上方兩個(gè)不同的點(diǎn)P,Q,設(shè)
F1P
F1Q

(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)求△F1AF2的內(nèi)切圓的方程;
(Ⅲ)若λ=
1
4
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn)為F1,F(xiàn)2,(1,
3
2
)為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸長(zhǎng)等于焦距,曲線(xiàn)C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線(xiàn),自F1引直線(xiàn)交曲線(xiàn)C于P,Q兩個(gè)不同的交點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)記為M,設(shè)
F1P
F1Q

(1)求橢圓方程和拋物線(xiàn)方程;
(2)證明:
F2M
=-λ
F2Q
;
(3)若λ∈[2,3],求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)判斷⊙O1和⊙O2的位置關(guān)系;
(Ⅱ)當(dāng)⊙O2半徑最大時(shí),(1)求⊙O1和⊙O2公共弦所在直線(xiàn)l1的方程;
(2)設(shè)直線(xiàn)l1交x軸于點(diǎn)F,拋物線(xiàn)C以坐標(biāo)原點(diǎn)為頂點(diǎn),以F為焦點(diǎn),直線(xiàn)l2經(jīng)過(guò)(3,0)與拋物線(xiàn)C相交于A、B兩點(diǎn),設(shè)∠AOB=α(O為坐標(biāo)原點(diǎn)),求α最大時(shí)cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案