7.已知$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$是空間的一個(gè)基底,$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c}\right\}$是空間的另一個(gè)基底.若向量$\overrightarrow p$在基底$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$下的坐標(biāo)為(3,5,7),則$\overrightarrow p$在基底$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c}\right\}$下的坐標(biāo)是(  )
A.(4,-2,7)B.(4,-1,7)C.(3,-1,7)D.(3,-2,7)

分析 $\overrightarrow{p}$=3$\overrightarrow{a}$+5$\overrightarrow$+7$\overrightarrow{c}$=4($\overrightarrow{a}$+$\overrightarrow$)-($\overrightarrow{a}$-$\overrightarrow$)+7$\overrightarrow{c}$,根據(jù)坐標(biāo)定義可得結(jié)論.

解答 解:由題意,$\overrightarrow{p}$=3$\overrightarrow{a}$+5$\overrightarrow$+7$\overrightarrow{c}$=4($\overrightarrow{a}$+$\overrightarrow$)-($\overrightarrow{a}$-$\overrightarrow$)+7$\overrightarrow{c}$
∴$\overrightarrow p$在基底$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c}\right\}$下的坐標(biāo)為(4,-1,7).
故選:B.

點(diǎn)評(píng) 考查基底的概念,空間向量坐標(biāo)的概念,以空間向量基本定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,在△ABC中,點(diǎn)O是BC的中點(diǎn),過(guò)點(diǎn)O的直線分別交直線AB、AC于不同的兩點(diǎn)M、N,若$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}({mn>0})$,則m+n的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{S_4}{a_4}=\frac{S_2}{a_2}$,則$\frac{{{S_{2016}}}}{S_1}$等于( 。
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),$f(x)={(\frac{1}{3})^x}$
(1)求函數(shù)f(x)的解析式;
(2)直接寫(xiě)出單調(diào)區(qū)間,并計(jì)算f(log32+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}中,a1=2,an=2an-1-1,則通項(xiàng)an=2n-1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在平行六面體ABCD-A1B1C1D1中,M,N分別在面對(duì)角線AC,A1C上且CM=2MA,A1N=2ND.記向量$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}=\overrightarrow c$,用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若平面α⊥平面β,且平面α內(nèi)的一條直線a垂直于平面β內(nèi)的一條直線b,則(  )
A.直線a必垂直于平面βB.直線b必垂直于平面α
C.直線a不一定垂直于平面βD.過(guò)a的平面與過(guò)b的平面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是$\frac{\sqrt{3}}{2}$.
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過(guò)F作直線l交拋物線C2于A,B兩點(diǎn),過(guò)F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)拋物線y2=16x的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)P(1,0)的直線l與拋物線交于A,B兩點(diǎn),且2$\overrightarrow{BP}$=$\overrightarrow{PA}$,則|AF|+2|BF|=15.

查看答案和解析>>

同步練習(xí)冊(cè)答案