已知a,b是給定的正數(shù),則的最小值為(    )

A.a2+b2            B.2ab            C.(a+b)2            D.4ab

思路分析:我們可利用平均不等式處理本題,利用三角函數(shù)sinα,cosα分別與cscα,secα的倒數(shù)關(guān)系去掉分母,再利用平方關(guān)系1+tan2α=sec2α,1+cot2α=csc2α變形,最后利用平均不等式.

    如果利用柯西不等式處理起來更方便,我們可以依照二維形式的柯西不等式進行構(gòu)造.

=(sin2α+cos2α)()

≥(sinα·+cosα·)2

=(a+b)2.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值;
(3)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P,Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c
 ,(x<1)
alnx
 ,(x≥1)
的圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)試確定實數(shù)b,c的值,并求f(x)在區(qū)間[-1,2]上的最大值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍山縣模擬)已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
和圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)求實數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點P,Q,使得對任意給定的正實數(shù)a都滿足△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上,求點P的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍山縣模擬)已知m是一個給定的正整數(shù),如果兩個整數(shù)a,b被m除得的余數(shù)相同,則稱a與b對模m同余,記作a≡b(modm),例如:5≡13(mod4).若22010≡r(mod7),則r可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2+bx+c(x<1)
alnx(x≥1)
,的圖象過點(-1,2),且在點(-1,f(-1))處的切線與直線x-5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)若P,Q是曲線y=f(x)上的兩點,且△POQ是以O(shè)為直角頂點的直角三角形,此三角形斜邊的中點在y軸上,則對任意給定的正實數(shù)a,滿足上述要求的三角形有幾個?

查看答案和解析>>

同步練習(xí)冊答案