分析 由題意可知a1,a2,a3,a4,a5的值,則a2-a1=5,a3-a2=9,a4-a3=13,a5-a4=17,猜想a6-a5=21,從而得a6的值和an-an-1=4n-3,所以(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1)=an-a1求得通項(xiàng)公式an.
解答 解:由題意,知a1=1,a2=6,a3=15,a4=28,a5=45,a6=66,…;
∴a2-a1=5,
a3-a2=9,
a4-a3=13,
a5-a4=17,
a6-a5=21,
…,
an-an-1=4n-3;
∴(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1)
=an-a1=5+9+13+17+21+…+(4n-3)=2n2-n-1;
∴an=2n2-n.
故答案為:66;2n2-n.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系以及求和公式的綜合應(yīng)用,解題時(shí)要探究數(shù)列的遞推關(guān)系,得出通項(xiàng)公式,并能正確求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com