已知=(-1,1),=(λ,1),若,則λ=________;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:蚌埠二中2008屆高三12月份月考數(shù)學(xué)試題(理) 題型:044

已知定義在實數(shù)集合R上的奇函數(shù)f(x)有最小正周期為2,且當(dāng)x∈(0,1)時,

(1)求函f(x)在[-1,1]上的解析式;

(2)判斷f(x)在(0,1)上的單調(diào)性;

(3)當(dāng)λ取何值時,方程f(x)=λ在[-1,1]上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)南市2012屆高三上學(xué)期12月月考數(shù)學(xué)試題 題型:044

已知定義在實數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時,f(x)=

(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;

(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;

(Ⅲ)當(dāng)λ取何值時,方程f(x)=λ在(-1,1)上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知=(c,0),=(n,n),||的最小值為1,若動點P同時滿足下列三個條件:

①|(zhì)|=||(a>c>0);

=λ(其中=(,t),λ≠0,t∈R);

③動點P的軌跡C經(jīng)過點B(0,-1).

(1)求c的值;

(2)求曲線C的方程;

(3)是否存在方向向量為a0=(1,k)(k≠0)的直線l,使l與曲線C交于兩個不同的點M、N,且||=||?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知=(c,0),=(n,n),||的最小值為1,若動點P同時滿足下列三個條件:

①|(zhì)|=||(a>c>0);

=λ(其中=(,t),λ≠0,t∈R);

③動點P的軌跡C經(jīng)過點B(0,-1).

(1)求c的值;

(2)求曲線C的方程;

(3)是否存在方向向量為a0=(1,k)(k≠0)的直線l,使l與曲線C交于兩個不同的點M、N,且||=||?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊答案