(本題滿分13分)一艘輪船在航行中每小時(shí)的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)8元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)128元.
(1)求輪船航行一小時(shí)的總費(fèi)用與它的航行速度(公里/小時(shí))的函數(shù)關(guān)系式;
(2)問(wèn)此輪船以多大的速度航行時(shí),能使每公里的總費(fèi)用最少?
(1)  (2) 此輪船以20公里/小時(shí)的速度行駛時(shí)每公里的費(fèi)用總和最小

試題分析:(1)設(shè)船速度為x公里/小時(shí)(x>0)時(shí),燃料費(fèi)用為Q元, (1分)則 (2分)
     
.(6分)
(2)由(1)知,每公里的總費(fèi)用   (9分)
  (10分)  令,得 
 
∴當(dāng)x=20時(shí),y取得最小值  (11分)
∴此輪船以20公里/小時(shí)的速度行駛時(shí)每公里的費(fèi)用總和最。(13分)
點(diǎn)評(píng):結(jié)合已知的條件,得到函數(shù)的模型結(jié)合導(dǎo)數(shù)的知識(shí)判定單調(diào)性,得到最值的求解,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)設(shè)函數(shù)
(1)畫(huà)出函數(shù)y=f(x)的圖像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)=則f(f(-4))=______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2)設(shè)為偶數(shù),,求的最小值和最大值;
(3)設(shè),若對(duì)任意,有,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

商場(chǎng)銷售某一品牌的羊毛衫,購(gòu)買人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購(gòu)買人數(shù)越少.把購(gòu)買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無(wú)效價(jià)格,已知無(wú)效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場(chǎng)以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問(wèn):
(1)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)偶函數(shù)的定義域?yàn)镽,當(dāng)時(shí),是增函數(shù),則的大小關(guān)系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004817902303.png" style="vertical-align:middle;" />的函數(shù)對(duì)任意都有,且其導(dǎo)函數(shù)滿足,則當(dāng)時(shí),有( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中e是自然數(shù)的底數(shù),
(1)當(dāng)時(shí),解不等式
(2)當(dāng)時(shí),求正整數(shù)k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知上是減函數(shù),則滿足的實(shí)數(shù)的取值范圍是(     ).
A.(-∞,1)B.(2,+∞)
C.(-∞,1)∪(2,+∞) D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案