已知集合M={x|log3x≤1},N={x|x2-2x<0},則(  )
A、M=NB、M∩N=∅
C、M∩N=RD、N⊆M
考點(diǎn):對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),交集及其運(yùn)算
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:解對(duì)數(shù)不等式求得M,解一元二次不等式求得N,從而得到M、N間的關(guān)系.
解答: 解:∵集合M={x|log3x≤1}={x|0<x≤3},N={x|x2-2x<0}={x|0<x<2},
∴N⊆M,
故選:D.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)不等式、一元二次不等式的解法,兩個(gè)集合間的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿(mǎn)足a1=1,an+1=f(
1
an
),n∈N*,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn;
(3)令bn=
1
an-1an
 (n≥2),b1=3,sn=b1+b2+…+bn,若sn
m-2005
2
對(duì)一切n∈N+成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+1
-
1-x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-x2在區(qū)間(0,3)上的最大值、最小值分別為( 。
A、1,-3
B、0,-3
C、無(wú)最大值,-3
D、1,無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓2x2+3y2=6的焦距是( 。
A、2
B、2(
3
-
2
C、2
5
D、2(
3
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四面體ABCD的四個(gè)頂點(diǎn)都在球O的表面上,AB⊥平面BCD,△BCD是邊長(zhǎng)為3的等邊三角形.若AB=2,則球O的表面積為(  )
A、4πB、12π
C、16πD、32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+x,若不等式f(-x)+f(x)≤2|x|的解集為C.
(1)求集合C;
(2)若方程f(ax)-ax+1=5(a>0,a≠1)在C上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,O為△ABC的外接圓圓心,AB=10,AC=4,∠BAC為鈍角,M是邊BC的點(diǎn),且滿(mǎn)足
BM
=2
MC
,則
AM
AO
=( 。
A、21B、22C、29D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,
3
)和圓O1:x2+(y+
3
2=16,點(diǎn)M在圓O1上運(yùn)動(dòng),點(diǎn)P在半徑O1M上,且|PM|=|PA|,則動(dòng)點(diǎn)P的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案