已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.
(1) +=1 (2) -或
【解析】
解:(1)設(shè)M到直線l的距離為d,
根據(jù)題意,d=2|MN|.
由此得|4-x|=2,
化簡(jiǎn)得+=1,
所以,動(dòng)點(diǎn)M的軌跡方程為+=1.
(2)法一 由題意,設(shè)直線m的方程為y=kx+3,A(x1,y1),B(x2,y2).
將y=kx+3代入+=1中,
有(3+4k2)x2+24kx+24=0,
其中,Δ=(24k)2-4×24(3+4k2)=96(2k2-3)>0,
由求根公式得,
x1+x2=-, ①
x1x2=. ②
又因A是PB的中點(diǎn),
故x2=2x1,③
將③代入①,②,得
x1=-,
=,
可得=,
且k2>,
解得k=-或k=,
所以,直線m的斜率為-或.
法二 由題意,設(shè)直線m的方程為y=kx+3,
A(x1,y1),B(x2,y2).
∵A是PB的中點(diǎn),
∴x1=,①
y1=.②
又+=1,③
+=1.④
聯(lián)立①,②,③,④解得或
即點(diǎn)B的坐標(biāo)為(2,0)或(-2,0),
所以,直線m的斜率為-或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)數(shù)學(xué)1-1北師大版 北師大版 題型:022
已知?jiǎng)狱c(diǎn)M(x,y)滿足方程:+=8,則動(dòng)點(diǎn)M的軌跡是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x = 4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(Ⅰ) 求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ) 過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A, B兩點(diǎn). 若A是PB的中點(diǎn), 求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求M點(diǎn)的軌跡E;
(2)M點(diǎn)在E上何處時(shí),|MA|+|MF|的值最小?其中A為(3,2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求αf(α)+βf(β)的值;
(2)判斷f(x)在區(qū)間(α,β)上的單調(diào)性,并加以證明;
(3)若λ、μ為正實(shí)數(shù),證明不等式:|f()-f()|<|α-β|.
(文)如圖,在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)P(x,y),PM⊥y軸,垂足為M,點(diǎn)N與點(diǎn)P關(guān)于x軸對(duì)稱,且=4.
(1)求動(dòng)點(diǎn)P的軌跡W的方程;
(2)若點(diǎn)Q的坐標(biāo)為(2,0),A、B為W上的兩個(gè)動(dòng)點(diǎn),且滿足QA⊥QB,點(diǎn)Q到直線AB的距離為d,求d的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com