(2012•東城區(qū)二模)執(zhí)行如圖的程序框圖,則第3次輸出的數(shù)為( 。
分析:A=1,S=1,執(zhí)行循環(huán)體,輸出A,A=1,S=2,滿足條件S≤5,循環(huán);依此類推,從而得出第3次輸出的數(shù)S即可.
解答:解:A=1,S=1,執(zhí)行循環(huán)體,
輸出A=1,S=2,滿足條件S≤5,循環(huán),執(zhí)行循環(huán)體A=3;
輸出A=3,S=3,滿足條件S≤5,循環(huán),執(zhí)行循環(huán)體A=5;
輸出A=5,S=4,滿足條件S≤5,循環(huán)…
則第3次輸出的數(shù)為5.
故選B.
點評:本題主要考查了直到型循環(huán)結(jié)構(gòu),根據(jù)流程圖計算運行結(jié)果是算法這一模塊的重要題型,處理的步驟一般為:分析流程圖,從流程圖中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型解模.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿足:An=
F(n,2)
F(2,n)
(n∈N+),若對任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)在R上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=x
1
2
,給出下列命題:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=(a+
1
a
)lnx+
1
x
-x(a>1).
(l)試討論f(x)在區(qū)間(0,1)上的單調(diào)性;
(2)當(dāng)a∈[3,+∞)時,曲線y=f(x)上總存在相異兩點P(x1,f(x1)),Q(x2,f (x2 )),使得曲線y=f(x)在點P,Q處的切線互相平行,求證:x1+x2
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)設(shè)M(x0,y0)為拋物線C:y2=8x上一點,F(xiàn)為拋物線C的焦點,若以F為圓心,|FM|為半徑的圓和拋物線C的準(zhǔn)線相交,則x0的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案