精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2x-cosx,{an}是公差為的等差數列,f(a1)+f(a2)+…+f(a5)=5π,則=( )
A.0
B.
C.
D.
【答案】分析:由f(x)=2x-cosx,又{an}是公差為的等差數列,可求得f(a1)+f(a2)+…+f(a5)=10a3-cosa3(1++),由題意可求得a3=,從而可求得答案.
解答:解:∵f(x)=2x-cosx,
∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)-(cosa1+cosa2+…+cosa5),
∵{an}是公差為的等差數列,
∴a1+a2+…+a5=5a3,由和差化積公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-×2)+cos(a3+×2)]+[cos(a3-)+cos(a3+)]+cosa3
=2coscos+2coscos+cosa3
=2cosa3+2cosa3•cos(-)+cosa3
=cosa3(1++),
∵f(a1)+f(a2)+…+f(a5)=5π,
∴cosa3=0,故a3=,

2-(-)•
2-
=
故選D.
點評:本題考查數列與三角函數的綜合,求得cosa3=0,繼而求得a3=是關鍵,也是難點,考查分析,推理與計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、設函數f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

給定實數a(a≠
12
),設函數f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數y=f′(x)的單調區(qū)間;
(Ⅱ)對于所有整數a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
-2x+m2x+n
(m、n為常數,且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數f(x)不是奇函數;
(Ⅱ)若f(x)是奇函數,求出m、n的值,并判斷此時函數f(x)的單調性.

查看答案和解析>>

同步練習冊答案