分析 設長方體的各棱長分別為a,b,c,表面積為S,由長方形的對角線長為1,得到a2+b2+c2=1,從而S=2(ab+bc+cd)≤2(a2+b2+c2)=2,由此能求出結果.
解答 解:設長方體的各棱長分別為a,b,c,表面積為S,
∵長方形的對角線長為1,
∴$\sqrt{{a}^{2}+^{2}+{c}^{2}}$=1,∴a2+b2+c2=1,
則有S=2(ab+bc+cd)≤2(a2+b2+c2)=2,
當且僅當a=b=c時,取等號,
這時a=b=c=$\frac{\sqrt{3}}{3}$,
∴長方體的最大的表面積為2,
這時長方體的各條棱長均為$\frac{\sqrt{3}}{3}$.
點評 本題考查長方體的最大表面積及其對應的各棱長的求法,是基礎題,解題時要認真審題,注意長方體的性質的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,+∞) | B. | (-∞,0)∪(3,+∞) | C. | (0,+∞) | D. | (-∞,0)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{26}{27}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{5}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{5}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com